Skip to content

Commit c91623e

Browse files
committed
fix(RingTheory/Finiteness): stablizes -> stabilizes (#10736)
1 parent 73c0d3b commit c91623e

File tree

2 files changed

+3
-3
lines changed

2 files changed

+3
-3
lines changed

Mathlib/RingTheory/Filtration.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -373,7 +373,7 @@ theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F
373373
simp_rw [← F.submodule_eq_span_le_iff_stable_ge]
374374
constructor
375375
· rintro H
376-
refine H.stablizes_of_iSup_eq
376+
refine H.stabilizes_of_iSup_eq
377377
fun n₀ => Submodule.span _ (⋃ (i : ℕ) (_ : i ≤ n₀), single R i '' ↑(F.N i)), ?_⟩ ?_
378378
· intro n m e
379379
rw [Submodule.span_le, Set.iUnion₂_subset_iff]

Mathlib/RingTheory/Finiteness.lean

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -368,7 +368,7 @@ theorem fg_restrictScalars {R S M : Type*} [CommSemiring R] [Semiring S] [Algebr
368368
exact (Submodule.restrictScalars_span R S h (X : Set M)).symm
369369
#align submodule.fg_restrict_scalars Submodule.fg_restrictScalars
370370

371-
theorem FG.stablizes_of_iSup_eq {M' : Submodule R M} (hM' : M'.FG) (N : ℕ →o Submodule R M)
371+
theorem FG.stabilizes_of_iSup_eq {M' : Submodule R M} (hM' : M'.FG) (N : ℕ →o Submodule R M)
372372
(H : iSup N = M') : ∃ n, M' = N n := by
373373
obtain ⟨S, hS⟩ := hM'
374374
have : ∀ s : S, ∃ n, (s : M) ∈ N n := fun s =>
@@ -385,7 +385,7 @@ theorem FG.stablizes_of_iSup_eq {M' : Submodule R M} (hM' : M'.FG) (N : ℕ →o
385385
exact N.2 (Finset.le_sup <| S.mem_attach ⟨s, hs⟩) (hf _)
386386
· rw [← H]
387387
exact le_iSup _ _
388-
#align submodule.fg.stablizes_of_supr_eq Submodule.FG.stablizes_of_iSup_eq
388+
#align submodule.fg.stablizes_of_supr_eq Submodule.FG.stabilizes_of_iSup_eq
389389

390390
/-- Finitely generated submodules are precisely compact elements in the submodule lattice. -/
391391
theorem fg_iff_compact (s : Submodule R M) : s.FG ↔ CompleteLattice.IsCompactElement s := by

0 commit comments

Comments
 (0)