Skip to content

Commit c93575a

Browse files
committed
chore: cleanup some spaces (#7484)
Purely cosmetic PR.
1 parent ffcd2b0 commit c93575a

File tree

46 files changed

+69
-69
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

46 files changed

+69
-69
lines changed

Archive/Sensitivity.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -138,7 +138,7 @@ theorem adj_iff_proj_adj {p q : Q n.succ} (h₀ : p 0 = q 0) :
138138
q ∈ p.adjacent ↔ π q ∈ (π p).adjacent := by
139139
constructor
140140
· rintro ⟨i, h_eq, h_uni⟩
141-
have h_i : i ≠ 0 := fun h_i => absurd h₀ (by rwa [h_i] at h_eq )
141+
have h_i : i ≠ 0 := fun h_i => absurd h₀ (by rwa [h_i] at h_eq)
142142
use i.pred h_i,
143143
show p (Fin.succ (Fin.pred i _)) ≠ q (Fin.succ (Fin.pred i _)) by rwa [Fin.succ_pred]
144144
intro y hy

Mathlib/Algebra/GradedMonoid.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -658,7 +658,7 @@ theorem SetLike.coe_list_dProd (A : ι → S) [SetLike.GradedMonoid A] (fι : α
658658
/-- A version of `List.coe_dProd_set_like` with `Subtype.mk`. -/
659659
theorem SetLike.list_dProd_eq (A : ι → S) [SetLike.GradedMonoid A] (fι : α → ι) (fA : ∀ a, A (fι a))
660660
(l : List α) :
661-
(@List.dProd _ _ (fun i => ↥(A i)) _ _ l fι fA ) =
661+
(@List.dProd _ _ (fun i => ↥(A i)) _ _ l fι fA) =
662662
⟨List.prod (l.map fun a => fA a),
663663
(l.dProdIndex_eq_map_sum fι).symm ▸
664664
list_prod_map_mem_graded l _ _ fun i _ => (fA i).prop⟩ :=

Mathlib/AlgebraicTopology/DoldKan/FunctorGamma.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -93,7 +93,7 @@ zero otherwise. -/
9393
def mapMono (K : ChainComplex C ℕ) {Δ' Δ : SimplexCategory} (i : Δ' ⟶ Δ) [Mono i] :
9494
K.X Δ.len ⟶ K.X Δ'.len := by
9595
by_cases Δ = Δ'
96-
· exact eqToHom (by congr )
96+
· exact eqToHom (by congr)
9797
· by_cases Isδ₀ i
9898
· exact K.d Δ.len Δ'.len
9999
· exact 0

Mathlib/AlgebraicTopology/DoldKan/Homotopies.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -112,7 +112,7 @@ theorem hσ'_eq_zero {q n m : ℕ} (hnq : n < q) (hnm : c.Rel m n) :
112112
theorem hσ'_eq {q n a m : ℕ} (ha : n = a + q) (hnm : c.Rel m n) :
113113
(hσ' q n m hnm : X _[n] ⟶ X _[m]) =
114114
((-1 : ℤ) ^ a • X.σ ⟨a, Nat.lt_succ_iff.mpr (Nat.le.intro (Eq.symm ha))⟩) ≫
115-
eqToHom (by congr ) := by
115+
eqToHom (by congr) := by
116116
simp only [hσ', hσ]
117117
split_ifs
118118
· exfalso

Mathlib/Analysis/Analytic/IsolatedZeros.lean

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -120,7 +120,7 @@ theorem locally_ne_zero (hp : HasFPowerSeriesAt f p z₀) (h : p ≠ 0) : ∀ᶠ
120120
#align has_fpower_series_at.locally_ne_zero HasFPowerSeriesAt.locally_ne_zero
121121

122122
theorem locally_zero_iff (hp : HasFPowerSeriesAt f p z₀) : (∀ᶠ z in 𝓝 z₀, f z = 0) ↔ p = 0 :=
123-
fun hf => hp.eq_zero_of_eventually hf, fun h => eventually_eq_zero (by rwa [h] at hp )⟩
123+
fun hf => hp.eq_zero_of_eventually hf, fun h => eventually_eq_zero (by rwa [h] at hp)⟩
124124
#align has_fpower_series_at.locally_zero_iff HasFPowerSeriesAt.locally_zero_iff
125125

126126
end HasFPowerSeriesAt
@@ -134,7 +134,7 @@ theorem eventually_eq_zero_or_eventually_ne_zero (hf : AnalyticAt 𝕜 f z₀) :
134134
(∀ᶠ z in 𝓝 z₀, f z = 0) ∨ ∀ᶠ z in 𝓝[≠] z₀, f z ≠ 0 := by
135135
rcases hf with ⟨p, hp⟩
136136
by_cases h : p = 0
137-
· exact Or.inl (HasFPowerSeriesAt.eventually_eq_zero (by rwa [h] at hp ))
137+
· exact Or.inl (HasFPowerSeriesAt.eventually_eq_zero (by rwa [h] at hp))
138138
· exact Or.inr (hp.locally_ne_zero h)
139139
#align analytic_at.eventually_eq_zero_or_eventually_ne_zero AnalyticAt.eventually_eq_zero_or_eventually_ne_zero
140140

Mathlib/Analysis/Convex/Segment.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -300,7 +300,7 @@ lemma segment_inter_eq_endpoint_of_linearIndependent_sub
300300
rw [Hx, Hy, smul_add, smul_add] at H
301301
have : c + q • (y - c) = c + p • (x - c) := by
302302
convert H using 1 <;> simp [sub_smul]
303-
obtain ⟨rfl, rfl⟩ : p = 0 ∧ q = 0 := h.eq_zero_of_pair' ((add_right_inj c).1 this ).symm
303+
obtain ⟨rfl, rfl⟩ : p = 0 ∧ q = 0 := h.eq_zero_of_pair' ((add_right_inj c).1 this).symm
304304
simp
305305

306306
end OrderedRing

Mathlib/CategoryTheory/Abelian/RightDerived.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -201,7 +201,7 @@ theorem exact_of_map_injectiveResolution (P : InjectiveResolution X) [PreservesF
201201
Preadditive.exact_of_iso_of_exact' (F.map (P.ι.f 0)) (F.map (P.cocomplex.d 0 1)) _ _ (Iso.refl _)
202202
(Iso.refl _)
203203
(HomologicalComplex.xNextIso ((F.mapHomologicalComplex _).obj P.cocomplex) rfl).symm (by simp)
204-
(by rw [Iso.refl_hom, Category.id_comp, Iso.symm_hom, HomologicalComplex.dFrom_eq] <;> congr )
204+
(by rw [Iso.refl_hom, Category.id_comp, Iso.symm_hom, HomologicalComplex.dFrom_eq] <;> congr)
205205
(preserves_exact_of_preservesFiniteLimits_of_mono _ P.exact₀)
206206
#align category_theory.abelian.functor.exact_of_map_injective_resolution CategoryTheory.Abelian.Functor.exact_of_map_injectiveResolution
207207

Mathlib/CategoryTheory/Functor/Currying.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -88,7 +88,7 @@ def currying : C ⥤ D ⥤ E ≌ C × D ⥤ E :=
8888
(NatIso.ofComponents fun F =>
8989
NatIso.ofComponents fun X => NatIso.ofComponents fun Y => Iso.refl _)
9090
(NatIso.ofComponents fun F => NatIso.ofComponents (fun X => eqToIso (by simp))
91-
(by intros X Y f; cases X; cases Y; cases f; dsimp at *; rw [←F.map_comp]; simp ))
91+
(by intros X Y f; cases X; cases Y; cases f; dsimp at *; rw [←F.map_comp]; simp))
9292
#align category_theory.currying CategoryTheory.currying
9393

9494
/-- `F.flip` is isomorphic to uncurrying `F`, swapping the variables, and currying. -/

Mathlib/CategoryTheory/Generator.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -291,7 +291,7 @@ theorem hasInitial_of_isCoseparating [WellPowered C] [HasLimits C] {𝒢 : Set C
291291
let t := Pi.lift (@Sigma.snd 𝒢 fun G => A ⟶ (G : C))
292292
haveI : Mono t := (isCoseparating_iff_mono 𝒢).1 h𝒢 A
293293
exact Subobject.ofLEMk _ (pullback.fst : pullback s t ⟶ _) bot_le ≫ pullback.snd
294-
· suffices ∀ (g : Subobject.underlying.obj ⊥ ⟶ A ), f = g by
294+
· suffices ∀ (g : Subobject.underlying.obj ⊥ ⟶ A), f = g by
295295
apply this
296296
intro g
297297
suffices IsSplitEpi (equalizer.ι f g) by exact eq_of_epi_equalizer

Mathlib/CategoryTheory/Grothendieck.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -196,7 +196,7 @@ def grothendieckTypeToCat : Grothendieck (G ⋙ typeToCat) ≌ G.Elements where
196196
rintro ⟨_, ⟨⟩⟩ ⟨_, ⟨⟩⟩ ⟨base, ⟨⟨f⟩⟩⟩
197197
dsimp at *
198198
simp
199-
rfl )
199+
rfl)
200200
counitIso :=
201201
NatIso.ofComponents
202202
(fun X => by

0 commit comments

Comments
 (0)