@@ -765,12 +765,21 @@ theorem lintegral_indicator (f : α → ℝ≥0∞) {s : Set α} (hs : Measurabl
765
765
refine ⟨⟨φ.restrict s, fun x => ?_⟩, le_rfl⟩
766
766
simp [hφ x, hs, indicator_le_indicator]
767
767
768
+ lemma setLIntegral_indicator (f : α → ℝ≥0 ∞) {s t : Set α} (hs : MeasurableSet s) :
769
+ ∫⁻ a in t, s.indicator f a ∂μ = ∫⁻ a in s ∩ t, f a ∂μ := by
770
+ rw [lintegral_indicator _ hs, Measure.restrict_restrict hs]
771
+
768
772
theorem lintegral_indicator₀ (f : α → ℝ≥0 ∞) {s : Set α} (hs : NullMeasurableSet s μ) :
769
773
∫⁻ a, s.indicator f a ∂μ = ∫⁻ a in s, f a ∂μ := by
770
774
rw [← lintegral_congr_ae (indicator_ae_eq_of_ae_eq_set hs.toMeasurable_ae_eq),
771
775
lintegral_indicator _ (measurableSet_toMeasurable _ _),
772
776
Measure.restrict_congr_set hs.toMeasurable_ae_eq]
773
777
778
+ lemma setLIntegral_indicator₀ (f : α → ℝ≥0 ∞) {s t : Set α}
779
+ (hs : NullMeasurableSet s (μ.restrict t)) :
780
+ ∫⁻ a in t, s.indicator f a ∂μ = ∫⁻ a in s ∩ t, f a ∂μ := by
781
+ rw [lintegral_indicator₀ _ hs, Measure.restrict_restrict₀ hs]
782
+
774
783
theorem lintegral_indicator_const_le (s : Set α) (c : ℝ≥0 ∞) :
775
784
∫⁻ a, s.indicator (fun _ => c) a ∂μ ≤ c * μ s :=
776
785
(lintegral_indicator_le _ _).trans (setLIntegral_const s c).le
@@ -860,6 +869,13 @@ lemma lintegral_le_meas {s : Set α} {f : α → ℝ≥0∞} (hf : ∀ a, f a
860
869
· simpa [hx] using hf x
861
870
· simpa [hx] using h'f x hx
862
871
872
+ lemma setLIntegral_le_meas {s t : Set α} (hs : MeasurableSet s)
873
+ {f : α → ℝ≥0 ∞} (hf : ∀ a ∈ s, a ∈ t → f a ≤ 1 )
874
+ (hf' : ∀ a ∈ s, a ∉ t → f a = 0 ) : ∫⁻ a in s, f a ∂μ ≤ μ t := by
875
+ rw [← lintegral_indicator _ hs]
876
+ refine lintegral_le_meas (fun a ↦ ?_) (by aesop)
877
+ by_cases has : a ∈ s <;> [by_cases hat : a ∈ t; skip] <;> simp [*]
878
+
863
879
theorem lintegral_eq_top_of_measure_eq_top_ne_zero {f : α → ℝ≥0 ∞} (hf : AEMeasurable f μ)
864
880
(hμf : μ {x | f x = ∞} ≠ 0 ) : ∫⁻ x, f x ∂μ = ∞ :=
865
881
eq_top_iff.mpr <|
0 commit comments