Skip to content

Commit c94e248

Browse files
james18lpcurkud
andcommitted
feat: setLintegral for indicator function and le_meas (#15322)
from GibbsMeasure Co-authored-by: Yael Dillies <yael.dillies@gmail.com> Co-authored-by: Yury G. Kudryashov <urkud@urkud.name>
1 parent 17659b7 commit c94e248

File tree

1 file changed

+16
-0
lines changed

1 file changed

+16
-0
lines changed

Mathlib/MeasureTheory/Integral/Lebesgue.lean

Lines changed: 16 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -765,12 +765,21 @@ theorem lintegral_indicator (f : α → ℝ≥0∞) {s : Set α} (hs : Measurabl
765765
refine ⟨⟨φ.restrict s, fun x => ?_⟩, le_rfl⟩
766766
simp [hφ x, hs, indicator_le_indicator]
767767

768+
lemma setLIntegral_indicator (f : α → ℝ≥0∞) {s t : Set α} (hs : MeasurableSet s) :
769+
∫⁻ a in t, s.indicator f a ∂μ = ∫⁻ a in s ∩ t, f a ∂μ := by
770+
rw [lintegral_indicator _ hs, Measure.restrict_restrict hs]
771+
768772
theorem lintegral_indicator₀ (f : α → ℝ≥0∞) {s : Set α} (hs : NullMeasurableSet s μ) :
769773
∫⁻ a, s.indicator f a ∂μ = ∫⁻ a in s, f a ∂μ := by
770774
rw [← lintegral_congr_ae (indicator_ae_eq_of_ae_eq_set hs.toMeasurable_ae_eq),
771775
lintegral_indicator _ (measurableSet_toMeasurable _ _),
772776
Measure.restrict_congr_set hs.toMeasurable_ae_eq]
773777

778+
lemma setLIntegral_indicator₀ (f : α → ℝ≥0∞) {s t : Set α}
779+
(hs : NullMeasurableSet s (μ.restrict t)) :
780+
∫⁻ a in t, s.indicator f a ∂μ = ∫⁻ a in s ∩ t, f a ∂μ := by
781+
rw [lintegral_indicator₀ _ hs, Measure.restrict_restrict₀ hs]
782+
774783
theorem lintegral_indicator_const_le (s : Set α) (c : ℝ≥0∞) :
775784
∫⁻ a, s.indicator (fun _ => c) a ∂μ ≤ c * μ s :=
776785
(lintegral_indicator_le _ _).trans (setLIntegral_const s c).le
@@ -860,6 +869,13 @@ lemma lintegral_le_meas {s : Set α} {f : α → ℝ≥0∞} (hf : ∀ a, f a
860869
· simpa [hx] using hf x
861870
· simpa [hx] using h'f x hx
862871

872+
lemma setLIntegral_le_meas {s t : Set α} (hs : MeasurableSet s)
873+
{f : α → ℝ≥0∞} (hf : ∀ a ∈ s, a ∈ t → f a ≤ 1)
874+
(hf' : ∀ a ∈ s, a ∉ t → f a = 0) : ∫⁻ a in s, f a ∂μ ≤ μ t := by
875+
rw [← lintegral_indicator _ hs]
876+
refine lintegral_le_meas (fun a ↦ ?_) (by aesop)
877+
by_cases has : a ∈ s <;> [by_cases hat : a ∈ t; skip] <;> simp [*]
878+
863879
theorem lintegral_eq_top_of_measure_eq_top_ne_zero {f : α → ℝ≥0∞} (hf : AEMeasurable f μ)
864880
(hμf : μ {x | f x = ∞} ≠ 0) : ∫⁻ x, f x ∂μ = ∞ :=
865881
eq_top_iff.mpr <|

0 commit comments

Comments
 (0)