@@ -83,15 +83,23 @@ instance instFunLike [TopologicalSpace F] [TopologicalAddGroup F]
83
83
(𝔖 : Set (Set E)) : FunLike (UniformConvergenceCLM σ F 𝔖) E F :=
84
84
ContinuousLinearMap.funLike
85
85
86
- instance continuousSemilinearMapClass [TopologicalSpace F] [TopologicalAddGroup F]
86
+ instance instContinuousSemilinearMapClass [TopologicalSpace F] [TopologicalAddGroup F]
87
87
(𝔖 : Set (Set E)) : ContinuousSemilinearMapClass (UniformConvergenceCLM σ F 𝔖) σ E F :=
88
88
ContinuousLinearMap.continuousSemilinearMapClass
89
- instance instTopologicalSpace [TopologicalSpace F]
90
- [TopologicalAddGroup F] (𝔖 : Set (Set E)) : TopologicalSpace (UniformConvergenceCLM σ F 𝔖) :=
89
+
90
+ instance instTopologicalSpace [TopologicalSpace F] [TopologicalAddGroup F] (𝔖 : Set (Set E)) :
91
+ TopologicalSpace (UniformConvergenceCLM σ F 𝔖) :=
91
92
(@UniformOnFun.topologicalSpace E F (TopologicalAddGroup.toUniformSpace F) 𝔖).induced
92
93
(DFunLike.coe : (UniformConvergenceCLM σ F 𝔖) → (E →ᵤ[𝔖] F))
93
94
#align continuous_linear_map.strong_topology UniformConvergenceCLM.instTopologicalSpace
94
95
96
+ theorem topologicalSpace_eq [UniformSpace F] [UniformAddGroup F] (𝔖 : Set (Set E)) :
97
+ instTopologicalSpace σ F 𝔖 = TopologicalSpace.induced DFunLike.coe
98
+ (UniformOnFun.topologicalSpace E F 𝔖) := by
99
+ rw [instTopologicalSpace]
100
+ congr
101
+ exact UniformAddGroup.toUniformSpace_eq
102
+
95
103
/-- The uniform structure associated with `ContinuousLinearMap.strongTopology`. We make sure
96
104
that this has nice definitional properties. -/
97
105
instance instUniformSpace [UniformSpace F] [UniformAddGroup F]
@@ -102,15 +110,18 @@ instance instUniformSpace [UniformSpace F] [UniformAddGroup F]
102
110
(by rw [UniformConvergenceCLM.instTopologicalSpace, UniformAddGroup.toUniformSpace_eq]; rfl)
103
111
#align continuous_linear_map.strong_uniformity UniformConvergenceCLM.instUniformSpace
104
112
113
+ theorem uniformSpace_eq [UniformSpace F] [UniformAddGroup F] (𝔖 : Set (Set E)) :
114
+ instUniformSpace σ F 𝔖 = UniformSpace.comap DFunLike.coe (UniformOnFun.uniformSpace E F 𝔖) := by
115
+ rw [instUniformSpace, UniformSpace.replaceTopology_eq]
116
+
105
117
@[simp]
106
118
theorem uniformity_toTopologicalSpace_eq [UniformSpace F] [UniformAddGroup F] (𝔖 : Set (Set E)) :
107
119
(UniformConvergenceCLM.instUniformSpace σ F 𝔖).toTopologicalSpace =
108
120
UniformConvergenceCLM.instTopologicalSpace σ F 𝔖 :=
109
121
rfl
110
122
#align continuous_linear_map.strong_uniformity_topology_eq UniformConvergenceCLM.uniformity_toTopologicalSpace_eq
111
123
112
- theorem uniformEmbedding_coeFn [UniformSpace F] [UniformAddGroup F]
113
- (𝔖 : Set (Set E)) :
124
+ theorem uniformEmbedding_coeFn [UniformSpace F] [UniformAddGroup F] (𝔖 : Set (Set E)) :
114
125
UniformEmbedding (α := UniformConvergenceCLM σ F 𝔖) (β := E →ᵤ[𝔖] F) DFunLike.coe :=
115
126
⟨⟨rfl⟩, DFunLike.coe_injective⟩
116
127
#align continuous_linear_map.strong_uniformity.uniform_embedding_coe_fn UniformConvergenceCLM.uniformEmbedding_coeFn
@@ -208,6 +219,20 @@ theorem tendsto_iff_tendstoUniformlyOn {ι : Type*} {p : Filter ι} [UniformSpac
208
219
rw [(embedding_coeFn σ F 𝔖).tendsto_nhds_iff, UniformOnFun.tendsto_iff_tendstoUniformlyOn]
209
220
rfl
210
221
222
+ variable {𝔖₁ 𝔖₂ : Set (Set E)}
223
+
224
+ theorem uniformSpace_mono [UniformSpace F] [UniformAddGroup F] (h : 𝔖₂ ⊆ 𝔖₁) :
225
+ instUniformSpace σ F 𝔖₁ ≤ instUniformSpace σ F 𝔖₂ := by
226
+ simp_rw [uniformSpace_eq]
227
+ exact UniformSpace.comap_mono (UniformOnFun.mono (le_refl _) h)
228
+
229
+ theorem topologicalSpace_mono [TopologicalSpace F] [TopologicalAddGroup F] (h : 𝔖₂ ⊆ 𝔖₁) :
230
+ instTopologicalSpace σ F 𝔖₁ ≤ instTopologicalSpace σ F 𝔖₂ := by
231
+ letI := TopologicalAddGroup.toUniformSpace F
232
+ haveI : UniformAddGroup F := comm_topologicalAddGroup_is_uniform
233
+ simp_rw [← uniformity_toTopologicalSpace_eq]
234
+ exact UniformSpace.toTopologicalSpace_mono (uniformSpace_mono σ F h)
235
+
211
236
end UniformConvergenceCLM
212
237
213
238
end General
0 commit comments