@@ -116,21 +116,16 @@ theorem normalize_associated_iff {x y : α} : Associated (normalize x) y ↔ Ass
116
116
theorem Associates.mk_normalize (x : α) : Associates.mk (normalize x) = Associates.mk x :=
117
117
Associates.mk_eq_mk_iff_associated.2 (normalize_associated _)
118
118
119
- @[simp]
120
119
theorem normalize_apply (x : α) : normalize x = x * normUnit x :=
121
120
rfl
122
121
123
- -- Porting note (#10618): `simp` can prove this
124
- -- @[ simp ]
125
122
theorem normalize_zero : normalize (0 : α) = 0 :=
126
123
normalize.map_zero
127
124
128
- -- Porting note (#10618): `simp` can prove this
129
- -- @[ simp ]
130
125
theorem normalize_one : normalize (1 : α) = 1 :=
131
126
normalize.map_one
132
127
133
- theorem normalize_coe_units (u : αˣ) : normalize (u : α) = 1 := by simp
128
+ theorem normalize_coe_units (u : αˣ) : normalize (u : α) = 1 := by simp [normalize_apply]
134
129
135
130
theorem normalize_eq_zero {x : α} : normalize x = 0 ↔ x = 0 :=
136
131
⟨fun hx => (associated_zero_iff_eq_zero x).1 <| hx ▸ associated_normalize _, by
@@ -147,7 +142,8 @@ theorem normUnit_mul_normUnit (a : α) : normUnit (a * normUnit a) = 1 := by
147
142
· rw [normUnit_zero, zero_mul, normUnit_zero]
148
143
· rw [normUnit_mul h (Units.ne_zero _), normUnit_coe_units, mul_inv_eq_one]
149
144
150
- theorem normalize_idem (x : α) : normalize (normalize x) = normalize x := by simp
145
+ @[simp]
146
+ theorem normalize_idem (x : α) : normalize (normalize x) = normalize x := by simp [normalize_apply]
151
147
152
148
theorem normalize_eq_normalize {a b : α} (hab : a ∣ b) (hba : b ∣ a) :
153
149
normalize a = normalize b := by
@@ -173,11 +169,11 @@ theorem Associated.eq_of_normalized
173
169
a = b :=
174
170
dvd_antisymm_of_normalize_eq ha hb h.dvd h.dvd'
175
171
176
- --can be proven by simp
172
+ @[ simp]
177
173
theorem dvd_normalize_iff {a b : α} : a ∣ normalize b ↔ a ∣ b :=
178
174
Units.dvd_mul_right
179
175
180
- --can be proven by simp
176
+ @[ simp]
181
177
theorem normalize_dvd_iff {a b : α} : normalize a ∣ b ↔ a ∣ b :=
182
178
Units.mul_right_dvd
183
179
@@ -216,8 +212,7 @@ theorem out_dvd_iff (a : α) (b : Associates α) : b.out ∣ a ↔ b ≤ Associa
216
212
theorem out_top : (⊤ : Associates α).out = 0 :=
217
213
normalize_zero
218
214
219
- -- Porting note: lower priority to avoid linter complaints about simp-normal form
220
- @[simp 1100]
215
+ @[simp]
221
216
theorem normalize_out (a : Associates α) : normalize a.out = a.out :=
222
217
Quotient.inductionOn a normalize_idem
223
218
@@ -287,8 +282,7 @@ theorem gcd_isUnit_iff_isRelPrime [GCDMonoid α] {a b : α} :
287
282
IsUnit (gcd a b) ↔ IsRelPrime a b :=
288
283
⟨fun h _ ha hb ↦ isUnit_of_dvd_unit (dvd_gcd ha hb) h, (· (gcd_dvd_left a b) (gcd_dvd_right a b))⟩
289
284
290
- -- Porting note: lower priority to avoid linter complaints about simp-normal form
291
- @[simp 1100]
285
+ @[simp]
292
286
theorem normalize_gcd [NormalizedGCDMonoid α] : ∀ a b : α, normalize (gcd a b) = gcd a b :=
293
287
NormalizedGCDMonoid.normalize_gcd
294
288
@@ -399,7 +393,7 @@ theorem gcd_mul_left [NormalizedGCDMonoid α] (a b c : α) :
399
393
gcd (a * b) (a * c) = normalize a * gcd b c :=
400
394
(by_cases (by rintro rfl; simp only [zero_mul, gcd_zero_left, normalize_zero]))
401
395
fun ha : a ≠ 0 =>
402
- suffices gcd (a * b) (a * c) = normalize (a * gcd b c) by simpa [- normalize_apply]
396
+ suffices gcd (a * b) (a * c) = normalize (a * gcd b c) by simpa
403
397
let ⟨d, eq⟩ := dvd_gcd (dvd_mul_right a b) (dvd_mul_right a c)
404
398
gcd_eq_normalize
405
399
(eq.symm ▸ mul_dvd_mul_left a
@@ -689,8 +683,7 @@ theorem lcm_eq_zero_iff [GCDMonoid α] (a b : α) : lcm a b = 0 ↔ a = 0 ∨ b
689
683
rwa [← mul_eq_zero, ← associated_zero_iff_eq_zero])
690
684
(by rintro (rfl | rfl) <;> [apply lcm_zero_left; apply lcm_zero_right])
691
685
692
- -- Porting note: lower priority to avoid linter complaints about simp-normal form
693
- @[simp 1100]
686
+ @[simp]
694
687
theorem normalize_lcm [NormalizedGCDMonoid α] (a b : α) : normalize (lcm a b) = lcm a b :=
695
688
NormalizedGCDMonoid.normalize_lcm a b
696
689
@@ -766,7 +759,7 @@ theorem lcm_mul_left [NormalizedGCDMonoid α] (a b c : α) :
766
759
lcm (a * b) (a * c) = normalize a * lcm b c :=
767
760
(by_cases (by rintro rfl; simp only [zero_mul, lcm_zero_left, normalize_zero]))
768
761
fun ha : a ≠ 0 =>
769
- suffices lcm (a * b) (a * c) = normalize (a * lcm b c) by simpa [- normalize_apply]
762
+ suffices lcm (a * b) (a * c) = normalize (a * lcm b c) by simpa
770
763
have : a ∣ lcm (a * b) (a * c) := (dvd_mul_right _ _).trans (dvd_lcm_left _ _)
771
764
let ⟨_, eq⟩ := this
772
765
lcm_eq_normalize
@@ -866,8 +859,7 @@ instance subsingleton_normalizedGCDMonoid_of_unique_units : Subsingleton (Normal
866
859
theorem normUnit_eq_one (x : α) : normUnit x = 1 :=
867
860
rfl
868
861
869
- -- Porting note (#10618): `simp` can prove this
870
- -- @[ simp ]
862
+ @[simp]
871
863
theorem normalize_eq (x : α) : normalize x = x :=
872
864
mul_one x
873
865
0 commit comments