Skip to content

Commit cda31e7

Browse files
committed
refactor(CategoryTheory/Monoidal/Rigid): use monoidalComp in the proofs (#10326)
Similar to #10078
1 parent 162edaa commit cda31e7

File tree

5 files changed

+238
-264
lines changed

5 files changed

+238
-264
lines changed

Mathlib/CategoryTheory/Monoidal/Functor.lean

Lines changed: 6 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -308,10 +308,16 @@ theorem map_tensor {X Y X' Y' : C} (f : X ⟶ Y) (g : X' ⟶ Y') :
308308
theorem map_whiskerLeft (X : C) {Y Z : C} (f : Y ⟶ Z) :
309309
F.map (𝟙 X ⊗ f) = inv (F.μ X Y) ≫ (𝟙 (F.obj X) ⊗ F.map f) ≫ F.μ X Z := by simp
310310

311+
theorem map_whiskerLeft' (X : C) {Y Z : C} (f : Y ⟶ Z) :
312+
F.map (X ◁ f) = inv (F.μ X Y) ≫ F.obj X ◁ F.map f ≫ F.μ X Z := by simp
313+
311314
-- Note: `f ⊗ 𝟙 Z` will be replaced by `f ▷ Z` in #6307.
312315
theorem map_whiskerRight {X Y : C} (f : X ⟶ Y) (Z : C) :
313316
F.map (f ⊗ 𝟙 Z) = inv (F.μ X Z) ≫ (F.map f ⊗ 𝟙 (F.obj Z)) ≫ F.μ Y Z := by simp
314317

318+
theorem map_whiskerRight' {X Y : C} (f : X ⟶ Y) (Z : C) :
319+
F.map (f ▷ Z) = inv (F.μ X Z) ≫ F.map f ▷ F.obj Z ≫ F.μ Y Z := by simp
320+
315321
theorem map_leftUnitor (X : C) :
316322
F.map (λ_ X).hom = inv (F.μ (𝟙_ C) X) ≫ (inv F.ε ⊗ 𝟙 (F.obj X)) ≫ (λ_ (F.obj X)).hom := by
317323
simp only [LaxMonoidalFunctor.left_unitality]

0 commit comments

Comments
 (0)