Skip to content

Commit cf041cc

Browse files
committed
chore: fix the names of some Bool lemmas (#7841)
1 parent 9492740 commit cf041cc

File tree

5 files changed

+13
-13
lines changed

5 files changed

+13
-13
lines changed

Mathlib/Combinatorics/SimpleGraph/Basic.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -145,7 +145,7 @@ def SimpleGraph.mk' {V : Type u} :
145145
simp only [mk.injEq, Subtype.mk.injEq]
146146
intro h
147147
funext v w
148-
simpa [Bool.coe_bool_iff] using congr_fun₂ h v w
148+
simpa [Bool.coe_iff_coe] using congr_fun₂ h v w
149149

150150
/-- We can enumerate simple graphs by enumerating all functions `V → V → Bool`
151151
and filtering on whether they are symmetric and irreflexive. -/

Mathlib/Computability/RegularExpressions.lean

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -238,7 +238,7 @@ theorem char_rmatch_iff (a : α) (x : List α) : rmatch (char a) x ↔ x = [a] :
238238
theorem add_rmatch_iff (P Q : RegularExpression α) (x : List α) :
239239
(P + Q).rmatch x ↔ P.rmatch x ∨ Q.rmatch x := by
240240
induction' x with _ _ ih generalizing P Q
241-
· simp only [rmatch, matchEpsilon, Bool.or_coe_iff]
241+
· simp only [rmatch, matchEpsilon, Bool.coe_or_iff]
242242
· repeat' rw [rmatch]
243243
rw [deriv_add]
244244
exact ih _ _
@@ -252,7 +252,7 @@ theorem mul_rmatch_iff (P Q : RegularExpression α) (x : List α) :
252252
· intro h
253253
refine' ⟨[], [], rfl, _⟩
254254
rw [rmatch, rmatch]
255-
rwa [Bool.and_coe_iff] at h
255+
rwa [Bool.coe_and_iff] at h
256256
· rintro ⟨t, u, h₁, h₂⟩
257257
cases' List.append_eq_nil.1 h₁.symm with ht hu
258258
subst ht

Mathlib/Data/Bool/AllAny.lean

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -27,7 +27,7 @@ namespace List
2727
theorem all_iff_forall {p : α → Bool} : all l p ↔ ∀ a ∈ l, p a := by
2828
induction' l with a l ih
2929
· exact iff_of_true rfl (forall_mem_nil _)
30-
simp only [all_cons, Bool.and_coe_iff, ih, forall_mem_cons]
30+
simp only [all_cons, Bool.coe_and_iff, ih, forall_mem_cons]
3131
#align list.all_iff_forall List.all_iff_forall
3232

3333
theorem all_iff_forall_prop : (all l fun a => p a) ↔ ∀ a ∈ l, p a := by
@@ -42,7 +42,7 @@ theorem all_iff_forall_prop : (all l fun a => p a) ↔ ∀ a ∈ l, p a := by
4242
theorem any_iff_exists {p : α → Bool} : any l p ↔ ∃ a ∈ l, p a := by
4343
induction' l with a l ih
4444
· exact iff_of_false Bool.not_false' (not_exists_mem_nil _)
45-
simp only [any_cons, Bool.or_coe_iff, ih, exists_mem_cons_iff]
45+
simp only [any_cons, Bool.coe_or_iff, ih, exists_mem_cons_iff]
4646
#align list.any_iff_exists List.any_iff_exists
4747

4848
theorem any_iff_exists_prop : (any l fun a => p a) ↔ ∃ a ∈ l, p a := by simp [any_iff_exists]

Mathlib/Data/Bool/Basic.lean

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -138,8 +138,8 @@ theorem cond_not {α} (b : Bool) (t e : α) : cond (!b) t e = cond b e t := by c
138138
theorem not_ne_id : not ≠ id := fun h ↦ false_ne_true <| congrFun h true
139139
#align bool.bnot_ne_id Bool.not_ne_id
140140

141-
theorem coe_bool_iff : ∀ {a b : Bool}, (a ↔ b) ↔ a = b := by decide
142-
#align bool.coe_bool_iff Bool.coe_bool_iff
141+
theorem coe_iff_coe : ∀ {a b : Bool}, (a ↔ b) ↔ a = b := by decide
142+
#align bool.coe_bool_iff Bool.coe_iff_coe
143143

144144
theorem eq_true_of_ne_false : ∀ {a : Bool}, a ≠ false → a = true := by decide
145145
#align bool.eq_tt_of_ne_ff Bool.eq_true_of_ne_false

Mathlib/Init/Data/Bool/Lemmas.lean

Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -161,16 +161,16 @@ theorem decide_congr {p q : Prop} [Decidable p] [Decidable q] (h : p ↔ q) :
161161
| true => exact decide_true (h.2 <| of_decide_true h')
162162
#align to_bool_congr Bool.decide_congr
163163

164-
theorem or_coe_iff (a b : Bool) : a || b ↔ a ∨ b := by simp
165-
#align bor_coe_iff Bool.or_coe_iff
164+
theorem coe_or_iff (a b : Bool) : a || b ↔ a ∨ b := by simp
165+
#align bor_coe_iff Bool.coe_or_iff
166166

167-
theorem and_coe_iff (a b : Bool) : a && b ↔ a ∧ b := by simp
168-
#align band_coe_iff Bool.and_coe_iff
167+
theorem coe_and_iff (a b : Bool) : a && b ↔ a ∧ b := by simp
168+
#align band_coe_iff Bool.coe_and_iff
169169

170170
@[simp]
171-
theorem xor_coe_iff (a b : Bool) : xor a b ↔ Xor' (a = true) (b = true) := by
171+
theorem coe_xor_iff (a b : Bool) : xor a b ↔ Xor' (a = true) (b = true) := by
172172
cases a <;> cases b <;> exact by decide
173-
#align bxor_coe_iff Bool.xor_coe_iff
173+
#align bxor_coe_iff Bool.coe_xor_iff
174174

175175
@[simp]
176176
theorem ite_eq_true_distrib (c : Prop) [Decidable c] (a b : Bool) :

0 commit comments

Comments
 (0)