|
| 1 | +/- |
| 2 | +Copyright (c) 2020 Bhavik Mehta. All rights reserved. |
| 3 | +Released under Apache 2.0 license as described in the file LICENSE. |
| 4 | +Authors: Bhavik Mehta |
| 5 | +
|
| 6 | +! This file was ported from Lean 3 source module category_theory.sites.spaces |
| 7 | +! leanprover-community/mathlib commit b6fa3beb29f035598cf0434d919694c5e98091eb |
| 8 | +! Please do not edit these lines, except to modify the commit id |
| 9 | +! if you have ported upstream changes. |
| 10 | +-/ |
| 11 | +import Mathlib.CategoryTheory.Sites.Grothendieck |
| 12 | +import Mathlib.CategoryTheory.Sites.Pretopology |
| 13 | +import Mathlib.CategoryTheory.Limits.Lattice |
| 14 | +import Mathlib.Topology.Sets.Opens |
| 15 | + |
| 16 | +/-! |
| 17 | +# Grothendieck topology on a topological space |
| 18 | +
|
| 19 | +Define the Grothendieck topology and the pretopology associated to a topological space, and show |
| 20 | +that the pretopology induces the topology. |
| 21 | +
|
| 22 | +The covering (pre)sieves on `X` are those for which the union of domains contains `X`. |
| 23 | +
|
| 24 | +## Tags |
| 25 | +
|
| 26 | +site, Grothendieck topology, space |
| 27 | +
|
| 28 | +## References |
| 29 | +
|
| 30 | +* [nLab, *Grothendieck topology*](https://ncatlab.org/nlab/show/Grothendieck+topology) |
| 31 | +* [S. MacLane, I. Moerdijk, *Sheaves in Geometry and Logic*][MM92] |
| 32 | +
|
| 33 | +## Implementation notes |
| 34 | +
|
| 35 | +We define the two separately, rather than defining the Grothendieck topology as that generated |
| 36 | +by the pretopology for the purpose of having nice definitional properties for the sieves. |
| 37 | +-/ |
| 38 | + |
| 39 | + |
| 40 | +universe u |
| 41 | + |
| 42 | +namespace Opens |
| 43 | + |
| 44 | +variable (T : Type u) [TopologicalSpace T] |
| 45 | + |
| 46 | +open CategoryTheory TopologicalSpace CategoryTheory.Limits |
| 47 | + |
| 48 | +/-- The Grothendieck topology associated to a topological space. -/ |
| 49 | +def grothendieckTopology : GrothendieckTopology (Opens T) |
| 50 | + where |
| 51 | + sieves X S := ∀ x ∈ X, ∃ (U : _)(f : U ⟶ X), S f ∧ x ∈ U |
| 52 | + top_mem' X x hx := ⟨_, 𝟙 _, trivial, hx⟩ |
| 53 | + pullback_stable' X Y S f hf y hy := |
| 54 | + by |
| 55 | + rcases hf y (f.le hy) with ⟨U, g, hg, hU⟩ |
| 56 | + refine' ⟨U ⊓ Y, homOfLE inf_le_right, _, hU, hy⟩ |
| 57 | + apply S.downward_closed hg (homOfLE inf_le_left) |
| 58 | + transitive' X S hS R hR x hx := |
| 59 | + by |
| 60 | + rcases hS x hx with ⟨U, f, hf, hU⟩ |
| 61 | + rcases hR hf _ hU with ⟨V, g, hg, hV⟩ |
| 62 | + exact ⟨_, g ≫ f, hg, hV⟩ |
| 63 | +#align opens.grothendieck_topology Opens.grothendieckTopology |
| 64 | + |
| 65 | +/-- The Grothendieck pretopology associated to a topological space. -/ |
| 66 | +def pretopology : Pretopology (Opens T) |
| 67 | + where |
| 68 | + coverings X R := ∀ x ∈ X, ∃ (U : _)(f : U ⟶ X), R f ∧ x ∈ U |
| 69 | + has_isos X Y f i x hx := ⟨_, _, Presieve.singleton_self _, (inv f).le hx⟩ |
| 70 | + pullbacks X Y f S hS x hx := |
| 71 | + by |
| 72 | + rcases hS _ (f.le hx) with ⟨U, g, hg, hU⟩ |
| 73 | + refine' ⟨_, _, Presieve.pullbackArrows.mk _ _ hg, _⟩ |
| 74 | + have : U ⊓ Y ≤ pullback g f |
| 75 | + refine' leOfHom (pullback.lift (homOfLE inf_le_left) (homOfLE inf_le_right) rfl) |
| 76 | + apply this ⟨hU, hx⟩ |
| 77 | + Transitive X S Ti hS hTi x hx := |
| 78 | + by |
| 79 | + rcases hS x hx with ⟨U, f, hf, hU⟩ |
| 80 | + rcases hTi f hf x hU with ⟨V, g, hg, hV⟩ |
| 81 | + exact ⟨_, _, ⟨_, g, f, hf, hg, rfl⟩, hV⟩ |
| 82 | +#align opens.pretopology Opens.pretopology |
| 83 | + |
| 84 | +/-- The pretopology associated to a space is the largest pretopology that |
| 85 | + generates the Grothendieck topology associated to the space. -/ |
| 86 | +@[simp] |
| 87 | +theorem pretopology_ofGrothendieck : |
| 88 | + Pretopology.ofGrothendieck _ (Opens.grothendieckTopology T) = Opens.pretopology T := by |
| 89 | + apply le_antisymm |
| 90 | + · intro X R hR x hx |
| 91 | + rcases hR x hx with ⟨U, f, ⟨V, g₁, g₂, hg₂, _⟩, hU⟩ |
| 92 | + exact ⟨V, g₂, hg₂, g₁.le hU⟩ |
| 93 | + · intro X R hR x hx |
| 94 | + rcases hR x hx with ⟨U, f, hf, hU⟩ |
| 95 | + exact ⟨U, f, Sieve.le_generate R U hf, hU⟩ |
| 96 | +#align opens.pretopology_of_grothendieck Opens.pretopology_ofGrothendieck |
| 97 | + |
| 98 | +/-- The pretopology associated to a space induces the Grothendieck topology associated to the space. |
| 99 | +-/ |
| 100 | +@[simp] |
| 101 | +theorem pretopology_toGrothendieck : |
| 102 | + Pretopology.toGrothendieck _ (Opens.pretopology T) = Opens.grothendieckTopology T := by |
| 103 | + rw [← pretopology_ofGrothendieck] |
| 104 | + apply (Pretopology.gi (Opens T)).l_u_eq |
| 105 | +#align opens.pretopology_to_grothendieck Opens.pretopology_toGrothendieck |
| 106 | + |
| 107 | +end Opens |
0 commit comments