@@ -103,6 +103,8 @@ theorem encard_ne_zero : s.encard ≠ 0 ↔ s.Nonempty := by
103
103
@[simp] theorem encard_pos : 0 < s.encard ↔ s.Nonempty := by
104
104
rw [pos_iff_ne_zero, encard_ne_zero]
105
105
106
+ protected alias ⟨_, Nonempty.encard_pos⟩ := encard_pos
107
+
106
108
@[simp] theorem encard_singleton (e : α) : ({e} : Set α).encard = 1 := by
107
109
rw [encard, ← PartENat.withTopEquiv.symm.injective.eq_iff, Equiv.symm_apply_apply,
108
110
PartENat.card_eq_coe_fintype_card, Fintype.card_ofSubsingleton, Nat.cast_one]; rfl
@@ -530,6 +532,8 @@ theorem ncard_univ (α : Type*) : (univ : Set α).ncard = Nat.card α := by
530
532
theorem ncard_pos (hs : s.Finite := by toFinite_tac) : 0 < s.ncard ↔ s.Nonempty := by
531
533
rw [pos_iff_ne_zero, Ne, ncard_eq_zero hs, nonempty_iff_ne_empty]
532
534
535
+ protected alias ⟨_, Nonempty.ncard_pos⟩ := ncard_pos
536
+
533
537
theorem ncard_ne_zero_of_mem {a : α} (h : a ∈ s) (hs : s.Finite := by toFinite_tac) : s.ncard ≠ 0 :=
534
538
((ncard_pos hs).mpr ⟨a, h⟩).ne.symm
535
539
@@ -789,6 +793,9 @@ theorem inj_on_of_surj_on_of_ncard_le {t : Set β} (f : ∀ a ∈ s, β) (hf :
789
793
(by { rwa [← ncard_eq_toFinset_card', ← ncard_eq_toFinset_card'] }) a₁
790
794
(by simpa) a₂ (by simpa) (by simpa)
791
795
796
+ @[simp] lemma ncard_graphOn (s : Set α) (f : α → β) : (s.graphOn f).ncard = s.ncard := by
797
+ rw [← ncard_image_of_injOn fst_injOn_graph, image_fst_graphOn]
798
+
792
799
section Lattice
793
800
794
801
theorem ncard_union_add_ncard_inter (s t : Set α) (hs : s.Finite := by toFinite_tac)
0 commit comments