File tree Expand file tree Collapse file tree 1 file changed +8
-0
lines changed Expand file tree Collapse file tree 1 file changed +8
-0
lines changed Original file line number Diff line number Diff line change @@ -2832,6 +2832,14 @@ theorem IsClosed.csInf_mem {s : Set α} (hc : IsClosed s) (hs : s.Nonempty) (B :
2832
2832
(isGLB_csInf hs B).mem_of_isClosed hs hc
2833
2833
#align is_closed.cInf_mem IsClosed.csInf_mem
2834
2834
2835
+ theorem IsClosed.isLeast_csInf {s : Set α} (hc : IsClosed s) (hs : s.Nonempty) (B : BddBelow s) :
2836
+ IsLeast s (sInf s) :=
2837
+ ⟨hc.csInf_mem hs B, (isGLB_csInf hs B).1 ⟩
2838
+
2839
+ theorem IsClosed.isGreatest_csSup {s : Set α} (hc : IsClosed s) (hs : s.Nonempty) (B : BddAbove s) :
2840
+ IsGreatest s (sSup s) :=
2841
+ IsClosed.isLeast_csInf (α := αᵒᵈ) hc hs B
2842
+
2835
2843
/-- If a monotone function is continuous at the supremum of a nonempty bounded above set `s`,
2836
2844
then it sends this supremum to the supremum of the image of `s`. -/
2837
2845
theorem Monotone.map_csSup_of_continuousAt {f : α → β} {s : Set α} (Cf : ContinuousAt f (sSup s))
You can’t perform that action at this time.
0 commit comments