Skip to content

Commit d0f7245

Browse files
committed
feat(Topology/Order): add IsClosed.isLeast_csInf (#7301)
Also add `IsClosed.isGreatest_csSup`.
1 parent 3430a1f commit d0f7245

File tree

1 file changed

+8
-0
lines changed

1 file changed

+8
-0
lines changed

Mathlib/Topology/Order/Basic.lean

Lines changed: 8 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -2832,6 +2832,14 @@ theorem IsClosed.csInf_mem {s : Set α} (hc : IsClosed s) (hs : s.Nonempty) (B :
28322832
(isGLB_csInf hs B).mem_of_isClosed hs hc
28332833
#align is_closed.cInf_mem IsClosed.csInf_mem
28342834

2835+
theorem IsClosed.isLeast_csInf {s : Set α} (hc : IsClosed s) (hs : s.Nonempty) (B : BddBelow s) :
2836+
IsLeast s (sInf s) :=
2837+
⟨hc.csInf_mem hs B, (isGLB_csInf hs B).1
2838+
2839+
theorem IsClosed.isGreatest_csSup {s : Set α} (hc : IsClosed s) (hs : s.Nonempty) (B : BddAbove s) :
2840+
IsGreatest s (sSup s) :=
2841+
IsClosed.isLeast_csInf (α := αᵒᵈ) hc hs B
2842+
28352843
/-- If a monotone function is continuous at the supremum of a nonempty bounded above set `s`,
28362844
then it sends this supremum to the supremum of the image of `s`. -/
28372845
theorem Monotone.map_csSup_of_continuousAt {f : α → β} {s : Set α} (Cf : ContinuousAt f (sSup s))

0 commit comments

Comments
 (0)