Skip to content

Commit d1a8af0

Browse files
committed
refactor: move disjoint_sdiff_inter (#12021)
Co-authored-by: Moritz Firsching <firsching@google.com>
1 parent 07d4b27 commit d1a8af0

File tree

2 files changed

+6
-13
lines changed

2 files changed

+6
-13
lines changed

Mathlib/Data/Set/Basic.lean

Lines changed: 5 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -1575,6 +1575,11 @@ lemma disjoint_sdiff_left : Disjoint (t \ s) s := disjoint_sdiff_self_left
15751575
lemma disjoint_sdiff_right : Disjoint s (t \ s) := disjoint_sdiff_self_right
15761576
#align set.disjoint_sdiff_right Set.disjoint_sdiff_right
15771577

1578+
-- TODO: prove this in terms of a lattice lemma
1579+
theorem disjoint_sdiff_inter : Disjoint (s \ t) (s ∩ t) :=
1580+
disjoint_of_subset_right (inter_subset_right _ _) disjoint_sdiff_left
1581+
#align set.disjoint_sdiff_inter Set.disjoint_sdiff_inter
1582+
15781583
theorem diff_union_diff_cancel (hts : t ⊆ s) (hut : u ⊆ t) : s \ t ∪ t \ u = s \ u :=
15791584
sdiff_sup_sdiff_cancel hts hut
15801585
#align set.diff_union_diff_cancel Set.diff_union_diff_cancel

Mathlib/MeasureTheory/Integral/PeakFunction.lean

Lines changed: 1 addition & 13 deletions
Original file line numberDiff line numberDiff line change
@@ -3,12 +3,7 @@ Copyright (c) 2023 Sébastien Gouëzel. All rights reserved.
33
Released under Apache 2.0 license as described in the file LICENSE.
44
Authors: Sébastien Gouëzel
55
-/
6-
import Mathlib.MeasureTheory.Integral.SetIntegral
7-
import Mathlib.MeasureTheory.Function.LocallyIntegrable
8-
import Mathlib.MeasureTheory.Measure.Lebesgue.EqHaar
96
import Mathlib.MeasureTheory.Integral.IntegralEqImproper
10-
import Mathlib.MeasureTheory.Group.Integral
11-
import Mathlib.MeasureTheory.Measure.Haar.Unique
127

138
#align_import measure_theory.integral.peak_function from "leanprover-community/mathlib"@"13b0d72fd8533ba459ac66e9a885e35ffabb32b2"
149

@@ -44,13 +39,6 @@ open Set Filter MeasureTheory MeasureTheory.Measure TopologicalSpace Metric
4439

4540
open scoped Topology ENNReal
4641

47-
/-- This lemma exists for finsets, but not for sets currently. porting note: move to
48-
data.set.basic after the port. -/
49-
theorem Set.disjoint_sdiff_inter {α : Type*} (s t : Set α) : Disjoint (s \ t) (s ∩ t) :=
50-
disjoint_of_subset_right (inter_subset_right _ _) disjoint_sdiff_left
51-
#align set.disjoint_sdiff_inter Set.disjoint_sdiff_inter
52-
53-
5442
/-!
5543
### General convergent result for integrals against a sequence of peak functions
5644
-/
@@ -186,7 +174,7 @@ theorem tendsto_set_integral_peak_smul_of_integrableOn_of_tendsto_aux
186174
‖∫ x in s, φ i x • g x ∂μ‖ =
187175
‖(∫ x in s \ u, φ i x • g x ∂μ) + ∫ x in s ∩ u, φ i x • g x ∂μ‖ := by
188176
conv_lhs => rw [← diff_union_inter s u]
189-
rw [integral_union (disjoint_sdiff_inter _ _) (hs.inter u_open.measurableSet)
177+
rw [integral_union disjoint_sdiff_inter (hs.inter u_open.measurableSet)
190178
(h''i.mono_set (diff_subset _ _)) (h''i.mono_set (inter_subset_left _ _))]
191179
_ ≤ ‖∫ x in s \ u, φ i x • g x ∂μ‖ + ‖∫ x in s ∩ u, φ i x • g x ∂μ‖ := norm_add_le _ _
192180
_ ≤ (δ * ∫ x in s, ‖g x‖ ∂μ) + 2 * δ := add_le_add C B

0 commit comments

Comments
 (0)