@@ -3,12 +3,7 @@ Copyright (c) 2023 Sébastien Gouëzel. All rights reserved.
3
3
Released under Apache 2.0 license as described in the file LICENSE.
4
4
Authors: Sébastien Gouëzel
5
5
-/
6
- import Mathlib.MeasureTheory.Integral.SetIntegral
7
- import Mathlib.MeasureTheory.Function.LocallyIntegrable
8
- import Mathlib.MeasureTheory.Measure.Lebesgue.EqHaar
9
6
import Mathlib.MeasureTheory.Integral.IntegralEqImproper
10
- import Mathlib.MeasureTheory.Group.Integral
11
- import Mathlib.MeasureTheory.Measure.Haar.Unique
12
7
13
8
#align_import measure_theory.integral.peak_function from "leanprover-community/mathlib" @"13b0d72fd8533ba459ac66e9a885e35ffabb32b2"
14
9
@@ -44,13 +39,6 @@ open Set Filter MeasureTheory MeasureTheory.Measure TopologicalSpace Metric
44
39
45
40
open scoped Topology ENNReal
46
41
47
- /-- This lemma exists for finsets, but not for sets currently. porting note: move to
48
- data.set.basic after the port. -/
49
- theorem Set.disjoint_sdiff_inter {α : Type *} (s t : Set α) : Disjoint (s \ t) (s ∩ t) :=
50
- disjoint_of_subset_right (inter_subset_right _ _) disjoint_sdiff_left
51
- #align set.disjoint_sdiff_inter Set.disjoint_sdiff_inter
52
-
53
-
54
42
/-!
55
43
### General convergent result for integrals against a sequence of peak functions
56
44
-/
@@ -186,7 +174,7 @@ theorem tendsto_set_integral_peak_smul_of_integrableOn_of_tendsto_aux
186
174
‖∫ x in s, φ i x • g x ∂μ‖ =
187
175
‖(∫ x in s \ u, φ i x • g x ∂μ) + ∫ x in s ∩ u, φ i x • g x ∂μ‖ := by
188
176
conv_lhs => rw [← diff_union_inter s u]
189
- rw [integral_union ( disjoint_sdiff_inter _ _) (hs.inter u_open.measurableSet)
177
+ rw [integral_union disjoint_sdiff_inter (hs.inter u_open.measurableSet)
190
178
(h''i.mono_set (diff_subset _ _)) (h''i.mono_set (inter_subset_left _ _))]
191
179
_ ≤ ‖∫ x in s \ u, φ i x • g x ∂μ‖ + ‖∫ x in s ∩ u, φ i x • g x ∂μ‖ := norm_add_le _ _
192
180
_ ≤ (δ * ∫ x in s, ‖g x‖ ∂μ) + 2 * δ := add_le_add C B
0 commit comments