@@ -132,7 +132,7 @@ theorem card_le_mul_sum {x k : ℕ} : (card (U x k) : ℝ) ≤ x * ∑ p in P x
132
132
have h : card (Finset.biUnion P N) ≤ ∑ p in P, card (N p) := card_biUnion_le
133
133
calc
134
134
(card (Finset.biUnion P N) : ℝ) ≤ ∑ p in P, (card (N p) : ℝ) := by assumption_mod_cast
135
- _ ≤ ∑ p in P, x * (1 / (p : ℝ)) := ( sum_le_sum fun p _ => ?_)
135
+ _ ≤ ∑ p in P, x * (1 / (p : ℝ)) := sum_le_sum fun p _ => ?_
136
136
_ = x * ∑ p in P, 1 / (p : ℝ) := by rw [mul_sum]
137
137
simp only [N, mul_one_div, Nat.card_multiples, Nat.cast_div_le]
138
138
#align theorems_100.card_le_mul_sum Theorems100.card_le_mul_sum
@@ -168,7 +168,7 @@ theorem card_le_two_pow {x k : ℕ} :
168
168
card M₁ ≤ card (image f K) := card_le_card h
169
169
_ ≤ card K := card_image_le
170
170
_ ≤ 2 ^ card (image Nat.succ (range k)) := by simp only [K, card_powerset]; rfl
171
- _ ≤ 2 ^ card (range k) := ( pow_le_pow_right one_le_two card_image_le)
171
+ _ ≤ 2 ^ card (range k) := pow_le_pow_right one_le_two card_image_le
172
172
_ = 2 ^ k := by rw [card_range k]
173
173
#align theorems_100.card_le_two_pow Theorems100.card_le_two_pow
174
174
@@ -205,7 +205,7 @@ theorem card_le_two_pow_mul_sqrt {x k : ℕ} : card (M x k) ≤ 2 ^ k * Nat.sqrt
205
205
calc
206
206
card (M x k) ≤ card (image f K) := card_le_card h1
207
207
_ ≤ card K := card_image_le
208
- _ = card M₁ * card M₂ := ( card_product M₁ M₂)
208
+ _ = card M₁ * card M₂ := card_product M₁ M₂
209
209
_ ≤ 2 ^ k * x.sqrt := mul_le_mul' card_le_two_pow h2
210
210
#align theorems_100.card_le_two_pow_mul_sqrt Theorems100.card_le_two_pow_mul_sqrt
211
211
@@ -236,7 +236,7 @@ theorem Real.tendsto_sum_one_div_prime_atTop :
236
236
have h3 :=
237
237
calc
238
238
(card U' : ℝ) ≤ x * ∑ p in P, 1 / (p : ℝ) := card_le_mul_sum
239
- _ < x * (1 / 2 ) := ( mul_lt_mul_of_pos_left (h1 x) (by norm_num [x]) )
239
+ _ < x * (1 / 2 ) := mul_lt_mul_of_pos_left (h1 x) (by norm_num [x])
240
240
_ = x / 2 := mul_one_div (x : ℝ) 2
241
241
have h4 :=
242
242
calc
@@ -246,7 +246,7 @@ theorem Real.tendsto_sum_one_div_prime_atTop :
246
246
refine' lt_irrefl (x : ℝ) _
247
247
calc
248
248
(x : ℝ) = (card U' : ℝ) + (card M' : ℝ) := by assumption_mod_cast
249
- _ < x / 2 + x / 2 := ( add_lt_add_of_lt_of_le h3 h4)
249
+ _ < x / 2 + x / 2 := add_lt_add_of_lt_of_le h3 h4
250
250
_ = x := add_halves (x : ℝ)
251
251
#align theorems_100.real.tendsto_sum_one_div_prime_at_top Theorems100.Real.tendsto_sum_one_div_prime_atTop
252
252
0 commit comments