|
| 1 | +/- |
| 2 | +Copyright (c) 2014 Jeremy Avigad. All rights reserved. |
| 3 | +Released under Apache 2.0 license as described in the file LICENSE. |
| 4 | +Authors: Jeremy Avigad, Leonardo de Moura, Floris van Doorn, Amelia Livingston, Yury Kudryashov, |
| 5 | +Neil Strickland, Aaron Anderson |
| 6 | +Ported by: Joël Riou |
| 7 | +-/ |
| 8 | +import Mathlib.Algebra.Divisibility.Basic |
| 9 | +import Mathlib.Algebra.Group.Units |
| 10 | + |
| 11 | +/-! |
| 12 | +# Lemmas about divisibility and units |
| 13 | +-/ |
| 14 | + |
| 15 | +variable {α : Type _} |
| 16 | + |
| 17 | +namespace Units |
| 18 | + |
| 19 | +section Monoid |
| 20 | + |
| 21 | +variable [Monoid α] {a b : α} {u : αˣ} |
| 22 | + |
| 23 | +/-- Elements of the unit group of a monoid represented as elements of the monoid |
| 24 | + divide any element of the monoid. -/ |
| 25 | +theorem coe_dvd : ↑u ∣ a := |
| 26 | + ⟨↑u⁻¹ * a, by simp⟩ |
| 27 | + |
| 28 | +/-- In a monoid, an element `a` divides an element `b` iff `a` divides all |
| 29 | + associates of `b`. -/ |
| 30 | +theorem dvd_mul_right : a ∣ b * u ↔ a ∣ b := |
| 31 | + Iff.intro (fun ⟨c, Eq⟩ ↦ ⟨c * ↑u⁻¹, by rw [← mul_assoc, ← Eq, Units.mul_inv_cancel_right]⟩) |
| 32 | + fun ⟨c, Eq⟩ ↦ Eq.symm ▸ (_root_.dvd_mul_right _ _).mul_right _ |
| 33 | + |
| 34 | +/-- In a monoid, an element `a` divides an element `b` iff all associates of `a` divide `b`. -/ |
| 35 | +theorem mul_right_dvd : a * u ∣ b ↔ a ∣ b := |
| 36 | + Iff.intro (fun ⟨c, Eq⟩ => ⟨↑u * c, Eq.trans (mul_assoc _ _ _)⟩) fun h => |
| 37 | + dvd_trans (Dvd.intro (↑u⁻¹) (by rw [mul_assoc, u.mul_inv, mul_one])) h |
| 38 | +#align units.mul_right_dvd Units.mul_right_dvd |
| 39 | + |
| 40 | +end Monoid |
| 41 | + |
| 42 | +section CommMonoid |
| 43 | + |
| 44 | +variable [CommMonoid α] {a b : α} {u : αˣ} |
| 45 | + |
| 46 | +/-- In a commutative monoid, an element `a` divides an element `b` iff `a` divides all left |
| 47 | + associates of `b`. -/ |
| 48 | +theorem dvd_mul_left : a ∣ u * b ↔ a ∣ b := by |
| 49 | + rw [mul_comm] |
| 50 | + apply dvd_mul_right |
| 51 | +#align units.dvd_mul_left Units.dvd_mul_left |
| 52 | + |
| 53 | +/-- In a commutative monoid, an element `a` divides an element `b` iff all |
| 54 | + left associates of `a` divide `b`.-/ |
| 55 | +theorem mul_left_dvd : ↑u * a ∣ b ↔ a ∣ b := by |
| 56 | + rw [mul_comm] |
| 57 | + apply mul_right_dvd |
| 58 | +#align units.mul_left_dvd Units.mul_left_dvd |
| 59 | + |
| 60 | +end CommMonoid |
| 61 | + |
| 62 | +end Units |
| 63 | + |
| 64 | +namespace IsUnit |
| 65 | + |
| 66 | +section Monoid |
| 67 | + |
| 68 | +variable [Monoid α] {a b u : α} (hu : IsUnit u) |
| 69 | + |
| 70 | +/-- Units of a monoid divide any element of the monoid. -/ |
| 71 | +@[simp] |
| 72 | +theorem dvd : u ∣ a := by |
| 73 | + rcases hu with ⟨u, rfl⟩ |
| 74 | + apply Units.coe_dvd |
| 75 | + |
| 76 | +@[simp] |
| 77 | +theorem dvd_mul_right : a ∣ b * u ↔ a ∣ b := by |
| 78 | + rcases hu with ⟨u, rfl⟩ |
| 79 | + apply Units.dvd_mul_right |
| 80 | + |
| 81 | +/-- In a monoid, an element a divides an element b iff all associates of `a` divide `b`.-/ |
| 82 | +@[simp] |
| 83 | +theorem mul_right_dvd : a * u ∣ b ↔ a ∣ b := by |
| 84 | + rcases hu with ⟨u, rfl⟩ |
| 85 | + apply Units.mul_right_dvd |
| 86 | + |
| 87 | +end Monoid |
| 88 | + |
| 89 | +section CommMonoid |
| 90 | + |
| 91 | +variable [CommMonoid α] (a b u : α) (hu : IsUnit u) |
| 92 | + |
| 93 | +/-- In a commutative monoid, an element `a` divides an element `b` iff `a` divides all left |
| 94 | + associates of `b`. -/ |
| 95 | +@[simp] |
| 96 | +theorem dvd_mul_left : a ∣ u * b ↔ a ∣ b := by |
| 97 | + rcases hu with ⟨u, rfl⟩ |
| 98 | + apply Units.dvd_mul_left |
| 99 | + |
| 100 | +/-- In a commutative monoid, an element `a` divides an element `b` iff all |
| 101 | + left associates of `a` divide `b`.-/ |
| 102 | +@[simp] |
| 103 | +theorem mul_left_dvd : u * a ∣ b ↔ a ∣ b := by |
| 104 | + rcases hu with ⟨u, rfl⟩ |
| 105 | + apply Units.mul_left_dvd |
| 106 | + |
| 107 | +end CommMonoid |
| 108 | + |
| 109 | +end IsUnit |
| 110 | + |
| 111 | +section CommMonoid |
| 112 | + |
| 113 | +variable [CommMonoid α] |
| 114 | + |
| 115 | +theorem isUnit_iff_dvd_one {x : α} : IsUnit x ↔ x ∣ 1 := |
| 116 | + ⟨IsUnit.dvd, fun ⟨y, h⟩ => ⟨⟨x, y, h.symm, by rw [h, mul_comm]⟩, rfl⟩⟩ |
| 117 | +#align is_unit_iff_dvd_one isUnit_iff_dvd_one |
| 118 | + |
| 119 | +theorem isUnit_iff_forall_dvd {x : α} : IsUnit x ↔ ∀ y, x ∣ y := |
| 120 | + isUnit_iff_dvd_one.trans ⟨fun h _ => h.trans (one_dvd _), fun h => h _⟩ |
| 121 | +#align is_unit_iff_forall_dvd isUnit_iff_forall_dvd |
| 122 | + |
| 123 | +theorem isUnit_of_dvd_unit {x y : α} (xy : x ∣ y) (hu : IsUnit y) : IsUnit x := |
| 124 | + isUnit_iff_dvd_one.2 <| xy.trans <| isUnit_iff_dvd_one.1 hu |
| 125 | +#align is_unit_of_dvd_unit isUnit_of_dvd_unit |
| 126 | + |
| 127 | +theorem isUnit_of_dvd_one {a : α} (h : a ∣ 1) : IsUnit (a : α) := |
| 128 | + isUnit_iff_dvd_one.mpr h |
| 129 | +#align is_unit_of_dvd_one isUnit_of_dvd_one |
| 130 | + |
| 131 | +theorem not_isUnit_of_not_isUnit_dvd {a b : α} (ha : ¬IsUnit a) (hb : a ∣ b) : ¬IsUnit b := |
| 132 | + mt (isUnit_of_dvd_unit hb) ha |
| 133 | +#align not_is_unit_of_not_is_unit_dvd not_isUnit_of_not_isUnit_dvd |
| 134 | + |
| 135 | +end CommMonoid |
0 commit comments