Skip to content

Commit d85717c

Browse files
committed
chore(DivergenceTheorem): drop some CompleteSpace assumptions (#24021)
1 parent abfb567 commit d85717c

File tree

2 files changed

+13
-6
lines changed

2 files changed

+13
-6
lines changed

Mathlib/Analysis/Complex/CauchyIntegral.lean

Lines changed: 6 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -151,7 +151,7 @@ noncomputable section
151151

152152
universe u
153153

154-
variable {E : Type u} [NormedAddCommGroup E] [NormedSpace ℂ E] [CompleteSpace E]
154+
variable {E : Type u} [NormedAddCommGroup E] [NormedSpace ℂ E]
155155

156156
namespace Complex
157157

@@ -334,6 +334,8 @@ theorem circleIntegral_eq_of_differentiable_on_annulus_off_countable {c : ℂ} {
334334
(differentiableAt_id.sub_const _).smul (hd z hz))
335335
_ = ∮ z in C(c, r), f z := circleIntegral.integral_sub_inv_smul_sub_smul _ _ _ _
336336

337+
variable [CompleteSpace E]
338+
337339
/-- **Cauchy integral formula** for the value at the center of a disc. If `f` is continuous on a
338340
punctured closed disc of radius `R`, is differentiable at all but countably many points of the
339341
interior of this disc, and has a limit `y` at the center of the disc, then the integral
@@ -393,12 +395,15 @@ theorem circleIntegral_sub_center_inv_smul_of_differentiable_on_off_countable {R
393395
(hc.mono diff_subset) (fun z hz => hd z ⟨hz.1.1, hz.2⟩)
394396
(hc.continuousAt <| closedBall_mem_nhds _ h0).continuousWithinAt
395397

398+
omit [CompleteSpace E] in
396399
/-- **Cauchy-Goursat theorem** for a disk: if `f : ℂ → E` is continuous on a closed disk
397400
`{z | ‖z - c‖ ≤ R}` and is complex differentiable at all but countably many points of its interior,
398401
then the integral $\oint_{|z-c|=R}f(z)\,dz$ equals zero. -/
399402
theorem circleIntegral_eq_zero_of_differentiable_on_off_countable {R : ℝ} (h0 : 0 ≤ R) {f : ℂ → E}
400403
{c : ℂ} {s : Set ℂ} (hs : s.Countable) (hc : ContinuousOn f (closedBall c R))
401404
(hd : ∀ z ∈ ball c R \ s, DifferentiableAt ℂ f z) : (∮ z in C(c, R), f z) = 0 := by
405+
wlog hE : CompleteSpace E generalizing
406+
· simp [circleIntegral, intervalIntegral, integral, hE]
402407
rcases h0.eq_or_lt with (rfl | h0); · apply circleIntegral.integral_radius_zero
403408
calc
404409
(∮ z in C(c, R), f z) = ∮ z in C(c, R), (z - c)⁻¹ • (z - c) • f z :=

Mathlib/MeasureTheory/Integral/DivergenceTheorem.lean

Lines changed: 7 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -62,7 +62,7 @@ universe u
6262

6363
namespace MeasureTheory
6464

65-
variable {E : Type u} [NormedAddCommGroup E] [NormedSpace ℝ E] [CompleteSpace E]
65+
variable {E : Type u} [NormedAddCommGroup E] [NormedSpace ℝ E]
6666

6767
section
6868

@@ -116,6 +116,8 @@ theorem integral_divergence_of_hasFDerivWithinAt_off_countable_aux₁ (I : Box (
116116
∑ i : Fin (n + 1),
117117
((∫ x in Box.Icc (I.face i), f (i.insertNth (I.upper i) x) i) -
118118
∫ x in Box.Icc (I.face i), f (i.insertNth (I.lower i) x) i) := by
119+
wlog hE : CompleteSpace E generalizing
120+
· simp [integral, hE]
119121
simp only [← setIntegral_congr_set (Box.coe_ae_eq_Icc _)]
120122
have A := (Hi.mono_set Box.coe_subset_Icc).hasBoxIntegral ⊥ rfl
121123
have B :=
@@ -372,8 +374,8 @@ differentiability of `f`;
372374
373375
* `MeasureTheory.integral_eq_of_hasDerivWithinAt_off_countable` for a version that works both
374376
for `a ≤ b` and `b ≤ a` at the expense of using unordered intervals instead of `Set.Icc`. -/
375-
theorem integral_eq_of_hasDerivWithinAt_off_countable_of_le (f f' : ℝ → E) {a b : ℝ}
376-
(hle : a ≤ b) {s : Set ℝ} (hs : s.Countable) (Hc : ContinuousOn f (Icc a b))
377+
theorem integral_eq_of_hasDerivWithinAt_off_countable_of_le [CompleteSpace E] (f f' : ℝ → E)
378+
{a b : ℝ} (hle : a ≤ b) {s : Set ℝ} (hs : s.Countable) (Hc : ContinuousOn f (Icc a b))
377379
(Hd : ∀ x ∈ Ioo a b \ s, HasDerivAt f (f' x) x) (Hi : IntervalIntegrable f' volume a b) :
378380
∫ x in a..b, f' x = f b - f a := by
379381
set e : ℝ ≃L[ℝ] ℝ¹ := (ContinuousLinearEquiv.funUnique (Fin 1) ℝ ℝ).symm
@@ -408,8 +410,8 @@ interval and is differentiable off a countable set `s`.
408410
See also `intervalIntegral.integral_eq_sub_of_hasDeriv_right` for a version that
409411
only assumes right differentiability of `f`.
410412
-/
411-
theorem integral_eq_of_hasDerivWithinAt_off_countable (f f' : ℝ → E) {a b : ℝ} {s : Set ℝ}
412-
(hs : s.Countable) (Hc : ContinuousOn f [[a, b]])
413+
theorem integral_eq_of_hasDerivWithinAt_off_countable [CompleteSpace E] (f f' : ℝ → E) {a b : ℝ}
414+
{s : Set ℝ} (hs : s.Countable) (Hc : ContinuousOn f [[a, b]])
413415
(Hd : ∀ x ∈ Ioo (min a b) (max a b) \ s, HasDerivAt f (f' x) x)
414416
(Hi : IntervalIntegrable f' volume a b) : ∫ x in a..b, f' x = f b - f a := by
415417
rcases le_total a b with hab | hab

0 commit comments

Comments
 (0)