@@ -62,7 +62,7 @@ universe u
62
62
63
63
namespace MeasureTheory
64
64
65
- variable {E : Type u} [NormedAddCommGroup E] [NormedSpace ℝ E] [CompleteSpace E]
65
+ variable {E : Type u} [NormedAddCommGroup E] [NormedSpace ℝ E]
66
66
67
67
section
68
68
@@ -116,6 +116,8 @@ theorem integral_divergence_of_hasFDerivWithinAt_off_countable_aux₁ (I : Box (
116
116
∑ i : Fin (n + 1 ),
117
117
((∫ x in Box.Icc (I.face i), f (i.insertNth (I.upper i) x) i) -
118
118
∫ x in Box.Icc (I.face i), f (i.insertNth (I.lower i) x) i) := by
119
+ wlog hE : CompleteSpace E generalizing
120
+ · simp [integral, hE]
119
121
simp only [← setIntegral_congr_set (Box.coe_ae_eq_Icc _)]
120
122
have A := (Hi.mono_set Box.coe_subset_Icc).hasBoxIntegral ⊥ rfl
121
123
have B :=
@@ -372,8 +374,8 @@ differentiability of `f`;
372
374
373
375
* `MeasureTheory.integral_eq_of_hasDerivWithinAt_off_countable` for a version that works both
374
376
for `a ≤ b` and `b ≤ a` at the expense of using unordered intervals instead of `Set.Icc`. -/
375
- theorem integral_eq_of_hasDerivWithinAt_off_countable_of_le (f f' : ℝ → E) {a b : ℝ}
376
- (hle : a ≤ b) {s : Set ℝ} (hs : s.Countable) (Hc : ContinuousOn f (Icc a b))
377
+ theorem integral_eq_of_hasDerivWithinAt_off_countable_of_le [CompleteSpace E] (f f' : ℝ → E)
378
+ {a b : ℝ} (hle : a ≤ b) {s : Set ℝ} (hs : s.Countable) (Hc : ContinuousOn f (Icc a b))
377
379
(Hd : ∀ x ∈ Ioo a b \ s, HasDerivAt f (f' x) x) (Hi : IntervalIntegrable f' volume a b) :
378
380
∫ x in a..b, f' x = f b - f a := by
379
381
set e : ℝ ≃L[ℝ] ℝ¹ := (ContinuousLinearEquiv.funUnique (Fin 1 ) ℝ ℝ).symm
@@ -408,8 +410,8 @@ interval and is differentiable off a countable set `s`.
408
410
See also `intervalIntegral.integral_eq_sub_of_hasDeriv_right` for a version that
409
411
only assumes right differentiability of `f`.
410
412
-/
411
- theorem integral_eq_of_hasDerivWithinAt_off_countable (f f' : ℝ → E) {a b : ℝ} {s : Set ℝ}
412
- (hs : s.Countable) (Hc : ContinuousOn f [[a, b]])
413
+ theorem integral_eq_of_hasDerivWithinAt_off_countable [CompleteSpace E] (f f' : ℝ → E) {a b : ℝ}
414
+ {s : Set ℝ} (hs : s.Countable) (Hc : ContinuousOn f [[a, b]])
413
415
(Hd : ∀ x ∈ Ioo (min a b) (max a b) \ s, HasDerivAt f (f' x) x)
414
416
(Hi : IntervalIntegrable f' volume a b) : ∫ x in a..b, f' x = f b - f a := by
415
417
rcases le_total a b with hab | hab
0 commit comments