@@ -4,13 +4,17 @@ Released under Apache 2.0 license as described in the file LICENSE.
4
4
Authors: Dagur Asgeirsson
5
5
-/
6
6
import Mathlib.Condensed.TopComparison
7
+ import Mathlib.Topology.Category.CompactlyGenerated
7
8
/-!
8
9
9
10
# The adjunction between condensed sets and topological spaces
10
11
11
12
This file defines the functor `condensedSetToTopCat : CondensedSet.{u} ⥤ TopCat.{u+1}` which is
12
13
left adjoint to `topCatToCondensedSet : TopCat.{u+1} ⥤ CondensedSet.{u}`. We prove that the counit
13
14
is bijective (but not in general an isomorphism) and conclude that the right adjoint is faithful.
15
+
16
+ The counit is an isomorphism for compactly generated spaces, and we conclude that the functor
17
+ `topCatToCondensedSet` is fully faithful when restricted to compactly generated spaces.
14
18
-/
15
19
16
20
universe u
@@ -41,6 +45,13 @@ def CondensedSet.toTopCat : TopCat.{u+1} := TopCat.of (X.val.obj ⟨CompHaus.of
41
45
42
46
namespace CondensedSet
43
47
48
+ lemma continuous_coinducingCoprod {S : CompHaus.{u}} (x : X.val.obj ⟨S⟩) :
49
+ Continuous fun a ↦ (X.coinducingCoprod ⟨⟨S, x⟩, a⟩) := by
50
+ suffices ∀ (i : (T : CompHaus.{u}) × X.val.obj ⟨T⟩),
51
+ Continuous (fun (a : i.fst) ↦ X.coinducingCoprod ⟨i, a⟩) from this ⟨_, _⟩
52
+ rw [← continuous_sigma_iff]
53
+ apply continuous_coinduced_rng
54
+
44
55
variable {X} {Y : CondensedSet} (f : X ⟶ Y)
45
56
46
57
/-- The map part of the functor `CondensedSet ⥤ TopCat` -/
@@ -56,10 +67,7 @@ def toTopCatMap : X.toTopCat ⟶ Y.toTopCat where
56
67
(fun (a : S) ↦ Y.val.map (S.const a).op (f.val.app ⟨S⟩ x)) :=
57
68
funext fun a ↦ NatTrans.naturality_apply f.val (S.const a).op x
58
69
rw [this]
59
- suffices ∀ (i : (T : CompHaus.{u}) × Y.val.obj ⟨T⟩),
60
- Continuous (fun (a : i.fst) ↦ Y.coinducingCoprod ⟨i, a⟩) from this ⟨_, _⟩
61
- rw [← continuous_sigma_iff]
62
- apply continuous_coinduced_rng
70
+ exact continuous_coinducingCoprod Y _
63
71
64
72
end CondensedSet
65
73
@@ -126,4 +134,71 @@ instance (X : TopCat) : Epi (topCatAdjunction.counit.app X) := by
126
134
127
135
instance : topCatToCondensedSet.Faithful := topCatAdjunction.faithful_R_of_epi_counit_app
128
136
137
+ open CompactlyGenerated
138
+
139
+ instance (X : CondensedSet.{u}) : CompactlyGeneratedSpace.{u, u+1 } X.toTopCat := by
140
+ apply compactlyGeneratedSpace_of_continuous_maps
141
+ intro Y _ f h
142
+ rw [continuous_coinduced_dom, continuous_sigma_iff]
143
+ exact fun ⟨S, s⟩ ↦ h S ⟨_, continuous_coinducingCoprod X _⟩
144
+
145
+ instance (X : CondensedSet.{u}) : CompactlyGeneratedSpace.{u, u+1 } (condensedSetToTopCat.obj X) :=
146
+ inferInstanceAs (CompactlyGeneratedSpace.{u, u+1 } X.toTopCat)
147
+
148
+ /-- The functor from condensed sets to topological spaces lands in compactly generated spaces. -/
149
+ def condensedSetToCompactlyGenerated : CondensedSet.{u} ⥤ CompactlyGenerated.{u, u+1 } where
150
+ obj X := CompactlyGenerated.of (condensedSetToTopCat.obj X)
151
+ map f := toTopCatMap f
152
+
153
+ /--
154
+ The functor from topological spaces to condensed sets restricted to compactly generated spaces.
155
+ -/
156
+ noncomputable def compactlyGeneratedToCondensedSet :
157
+ CompactlyGenerated.{u, u+1 } ⥤ CondensedSet.{u} :=
158
+ compactlyGeneratedToTop ⋙ topCatToCondensedSet
159
+
160
+
161
+ /--
162
+ The adjunction `condensedSetToTopCat ⊣ topCatToCondensedSet` restricted to compactly generated
163
+ spaces.
164
+ -/
165
+ noncomputable def compactlyGeneratedAdjunction :
166
+ condensedSetToCompactlyGenerated ⊣ compactlyGeneratedToCondensedSet :=
167
+ topCatAdjunction.restrictFullyFaithful (iC := 𝟭 _) (iD := compactlyGeneratedToTop)
168
+ (Functor.FullyFaithful.id _) fullyFaithfulCompactlyGeneratedToTop
169
+ (Iso.refl _) (Iso.refl _)
170
+
171
+ /--
172
+ The counit of the adjunction `condensedSetToCompactlyGenerated ⊣ compactlyGeneratedToCondensedSet`
173
+ is a homeomorphism.
174
+ -/
175
+ def compactlyGeneratedAdjunctionCounitHomeo (X : TopCat.{u+1 }) [CompactlyGeneratedSpace.{u} X] :
176
+ X.toCondensedSet.toTopCat ≃ₜ X where
177
+ toEquiv := topCatAdjunctionCounitEquiv X
178
+ continuous_toFun := (topCatAdjunctionCounit X).continuous
179
+ continuous_invFun := by
180
+ apply continuous_from_compactlyGeneratedSpace
181
+ exact fun _ _ ↦ continuous_coinducingCoprod X.toCondensedSet _
182
+
183
+ /--
184
+ The counit of the adjunction `condensedSetToCompactlyGenerated ⊣ compactlyGeneratedToCondensedSet`
185
+ is an isomorphism.
186
+ -/
187
+ noncomputable def compactlyGeneratedAdjunctionCounitIso (X : CompactlyGenerated.{u, u+1 }) :
188
+ condensedSetToCompactlyGenerated.obj (compactlyGeneratedToCondensedSet.obj X) ≅ X :=
189
+ isoOfHomeo (compactlyGeneratedAdjunctionCounitHomeo X.toTop)
190
+
191
+ instance : IsIso compactlyGeneratedAdjunction.counit := by
192
+ rw [NatTrans.isIso_iff_isIso_app]
193
+ intro X
194
+ exact inferInstanceAs (IsIso (compactlyGeneratedAdjunctionCounitIso X).hom)
195
+
196
+ /--
197
+ The functor from topological spaces to condensed sets restricted to compactly generated spaces
198
+ is fully faithful.
199
+ -/
200
+ noncomputable def fullyFaithfulCompactlyGeneratedToCondensedSet :
201
+ compactlyGeneratedToCondensedSet.FullyFaithful :=
202
+ compactlyGeneratedAdjunction.fullyFaithfulROfIsIsoCounit
203
+
129
204
end CondensedSet
0 commit comments