File tree Expand file tree Collapse file tree 2 files changed +2
-6
lines changed Expand file tree Collapse file tree 2 files changed +2
-6
lines changed Original file line number Diff line number Diff line change @@ -91,9 +91,7 @@ variable [Preorder α] {f : Filter β} {u : β → α} {s : Set β}
91
91
92
92
lemma IsBoundedUnder.eventually_le (h : IsBoundedUnder (· ≤ ·) f u) :
93
93
∃ a, ∀ᶠ x in f, u x ≤ a := by
94
- obtain ⟨a, ha⟩ := h
95
- use a
96
- exact eventually_map.1 ha
94
+ tauto
97
95
98
96
lemma IsBoundedUnder.eventually_ge (h : IsBoundedUnder (· ≥ ·) f u) :
99
97
∃ a, ∀ᶠ x in f, a ≤ u x :=
Original file line number Diff line number Diff line change @@ -424,9 +424,7 @@ instance : OmegaCompletePartialOrder (α × β) where
424
424
ωSup_le := fun _ _ h => ⟨ωSup_le _ _ fun i => (h i).1 , ωSup_le _ _ fun i => (h i).2 ⟩
425
425
le_ωSup c i := ⟨le_ωSup (c.map OrderHom.fst) i, le_ωSup (c.map OrderHom.snd) i⟩
426
426
427
- theorem ωSup_zip (c₀ : Chain α) (c₁ : Chain β) : ωSup (c₀.zip c₁) = (ωSup c₀, ωSup c₁) := by
428
- apply eq_of_forall_ge_iff; rintro ⟨z₁, z₂⟩
429
- simp [ωSup_le_iff, forall_and]
427
+ theorem ωSup_zip (c₀ : Chain α) (c₁ : Chain β) : ωSup (c₀.zip c₁) = (ωSup c₀, ωSup c₁) := rfl
430
428
431
429
end Prod
432
430
You can’t perform that action at this time.
0 commit comments