Skip to content

Commit d9686a3

Browse files
committed
chore(Order): golf entire IsBoundedUnder.eventually_le and ωSup_zip using tauto and rfl (#28568)
Co-authored-by: euprunin <euprunin@users.noreply.github.com>
1 parent dc6e7c8 commit d9686a3

File tree

2 files changed

+2
-6
lines changed

2 files changed

+2
-6
lines changed

Mathlib/Order/Filter/IsBounded.lean

Lines changed: 1 addition & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -91,9 +91,7 @@ variable [Preorder α] {f : Filter β} {u : β → α} {s : Set β}
9191

9292
lemma IsBoundedUnder.eventually_le (h : IsBoundedUnder (· ≤ ·) f u) :
9393
∃ a, ∀ᶠ x in f, u x ≤ a := by
94-
obtain ⟨a, ha⟩ := h
95-
use a
96-
exact eventually_map.1 ha
94+
tauto
9795

9896
lemma IsBoundedUnder.eventually_ge (h : IsBoundedUnder (· ≥ ·) f u) :
9997
∃ a, ∀ᶠ x in f, a ≤ u x :=

Mathlib/Order/OmegaCompletePartialOrder.lean

Lines changed: 1 addition & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -424,9 +424,7 @@ instance : OmegaCompletePartialOrder (α × β) where
424424
ωSup_le := fun _ _ h => ⟨ωSup_le _ _ fun i => (h i).1, ωSup_le _ _ fun i => (h i).2
425425
le_ωSup c i := ⟨le_ωSup (c.map OrderHom.fst) i, le_ωSup (c.map OrderHom.snd) i⟩
426426

427-
theorem ωSup_zip (c₀ : Chain α) (c₁ : Chain β) : ωSup (c₀.zip c₁) = (ωSup c₀, ωSup c₁) := by
428-
apply eq_of_forall_ge_iff; rintro ⟨z₁, z₂⟩
429-
simp [ωSup_le_iff, forall_and]
427+
theorem ωSup_zip (c₀ : Chain α) (c₁ : Chain β) : ωSup (c₀.zip c₁) = (ωSup c₀, ωSup c₁) := rfl
430428

431429
end Prod
432430

0 commit comments

Comments
 (0)