@@ -250,7 +250,7 @@ section Truncation
250
250
251
251
/-- The truncation functor from simplicial objects to truncated simplicial objects. -/
252
252
def truncation (n : ℕ) : SimplicialObject C ⥤ SimplicialObject.Truncated C n :=
253
- (whiskeringLeft _ _ _).obj SimplexCategory.Truncated.inclusion.op
253
+ (whiskeringLeft _ _ _).obj ( SimplexCategory.Truncated.inclusion n) .op
254
254
255
255
end Truncation
256
256
@@ -259,24 +259,24 @@ noncomputable section
259
259
260
260
/-- The n-skeleton as a functor `SimplicialObject.Truncated C n ⥤ SimplicialObject C`. -/
261
261
protected abbrev Truncated.sk (n : ℕ) [∀ (F : (SimplexCategory.Truncated n)ᵒᵖ ⥤ C),
262
- SimplexCategory.Truncated.inclusion.op.HasLeftKanExtension F] :
262
+ ( SimplexCategory.Truncated.inclusion n) .op.HasLeftKanExtension F] :
263
263
SimplicialObject.Truncated C n ⥤ SimplicialObject C :=
264
- lan (SimplexCategory.Truncated.inclusion.op)
264
+ lan (SimplexCategory.Truncated.inclusion n) .op
265
265
266
266
/-- The n-coskeleton as a functor `SimplicialObject.Truncated C n ⥤ SimplicialObject C`. -/
267
267
protected abbrev Truncated.cosk (n : ℕ) [∀ (F : (SimplexCategory.Truncated n)ᵒᵖ ⥤ C),
268
- SimplexCategory.Truncated.inclusion.op.HasRightKanExtension F] :
268
+ ( SimplexCategory.Truncated.inclusion n) .op.HasRightKanExtension F] :
269
269
SimplicialObject.Truncated C n ⥤ SimplicialObject C :=
270
- ran (SimplexCategory.Truncated.inclusion.op)
270
+ ran (SimplexCategory.Truncated.inclusion n) .op
271
271
272
272
/-- The n-skeleton as an endofunctor on `SimplicialObject C`. -/
273
273
abbrev sk (n : ℕ) [∀ (F : (SimplexCategory.Truncated n)ᵒᵖ ⥤ C),
274
- SimplexCategory.Truncated.inclusion.op.HasLeftKanExtension F] :
274
+ ( SimplexCategory.Truncated.inclusion n) .op.HasLeftKanExtension F] :
275
275
SimplicialObject C ⥤ SimplicialObject C := truncation n ⋙ Truncated.sk n
276
276
277
277
/-- The n-coskeleton as an endofunctor on `SimplicialObject C`. -/
278
278
abbrev cosk (n : ℕ) [∀ (F : (SimplexCategory.Truncated n)ᵒᵖ ⥤ C),
279
- SimplexCategory.Truncated.inclusion.op.HasRightKanExtension F] :
279
+ ( SimplexCategory.Truncated.inclusion n) .op.HasRightKanExtension F] :
280
280
SimplicialObject C ⥤ SimplicialObject C := truncation n ⋙ Truncated.cosk n
281
281
282
282
end
@@ -288,9 +288,9 @@ respectively define left and right adjoints to `truncation n`.-/
288
288
289
289
variable (n : ℕ)
290
290
variable [∀ (F : (SimplexCategory.Truncated n)ᵒᵖ ⥤ C),
291
- SimplexCategory.Truncated.inclusion.op.HasRightKanExtension F]
291
+ ( SimplexCategory.Truncated.inclusion n) .op.HasRightKanExtension F]
292
292
variable [∀ (F : (SimplexCategory.Truncated n)ᵒᵖ ⥤ C),
293
- SimplexCategory.Truncated.inclusion.op.HasLeftKanExtension F]
293
+ ( SimplexCategory.Truncated.inclusion n) .op.HasLeftKanExtension F]
294
294
295
295
/-- The adjunction between the n-skeleton and n-truncation.-/
296
296
noncomputable def skAdj : Truncated.sk (C := C) n ⊣ truncation n :=
@@ -300,20 +300,30 @@ noncomputable def skAdj : Truncated.sk (C := C) n ⊣ truncation n :=
300
300
noncomputable def coskAdj : truncation (C := C) n ⊣ Truncated.cosk n :=
301
301
ranAdjunction _ _
302
302
303
+ instance : ((sk n).obj X).IsLeftKanExtension ((skAdj n).unit.app _) := by
304
+ dsimp [sk, skAdj]
305
+ rw [lanAdjunction_unit]
306
+ infer_instance
307
+
308
+ instance : ((cosk n).obj X).IsRightKanExtension ((coskAdj n).counit.app _) := by
309
+ dsimp [cosk, coskAdj]
310
+ rw [ranAdjunction_counit]
311
+ infer_instance
312
+
303
313
namespace Truncated
304
314
/- When the left and right Kan extensions exist and are pointwise Kan extensions,
305
315
`skAdj n` and `coskAdj n` are respectively coreflective and reflective.-/
306
316
307
317
variable [∀ (F : (SimplexCategory.Truncated n)ᵒᵖ ⥤ C),
308
- SimplexCategory.Truncated.inclusion.op.HasPointwiseRightKanExtension F]
318
+ ( SimplexCategory.Truncated.inclusion n) .op.HasPointwiseRightKanExtension F]
309
319
variable [∀ (F : (SimplexCategory.Truncated n)ᵒᵖ ⥤ C),
310
- SimplexCategory.Truncated.inclusion.op.HasPointwiseLeftKanExtension F]
320
+ ( SimplexCategory.Truncated.inclusion n) .op.HasPointwiseLeftKanExtension F]
311
321
312
322
instance cosk_reflective : IsIso (coskAdj (C := C) n).counit :=
313
- reflective' SimplexCategory.Truncated.inclusion.op
323
+ reflective' ( SimplexCategory.Truncated.inclusion n) .op
314
324
315
325
instance sk_coreflective : IsIso (skAdj (C := C) n).unit :=
316
- coreflective' SimplexCategory.Truncated.inclusion.op
326
+ coreflective' ( SimplexCategory.Truncated.inclusion n) .op
317
327
318
328
/-- Since `Truncated.inclusion` is fully faithful, so is right Kan extension along it.-/
319
329
noncomputable def cosk.fullyFaithful :
@@ -675,7 +685,7 @@ section Truncation
675
685
676
686
/-- The truncation functor from cosimplicial objects to truncated cosimplicial objects. -/
677
687
def truncation (n : ℕ) : CosimplicialObject C ⥤ CosimplicialObject.Truncated C n :=
678
- (whiskeringLeft _ _ _).obj SimplexCategory.Truncated.inclusion
688
+ (whiskeringLeft _ _ _).obj ( SimplexCategory.Truncated.inclusion n)
679
689
680
690
end Truncation
681
691
0 commit comments