Skip to content

Commit

Permalink
chore: classify "removed @[pp_nodot]" porting notes (#11447)
Browse files Browse the repository at this point in the history
Classifies by adding issue number #11180 to porting notes claiming: 

> removed `@[pp_nodot]`
  • Loading branch information
pitmonticone authored and callesonne committed Apr 22, 2024
1 parent 4f23159 commit e0e36cd
Showing 1 changed file with 15 additions and 15 deletions.
30 changes: 15 additions & 15 deletions Mathlib/Data/Complex/Exponential.lean
Original file line number Diff line number Diff line change
Expand Up @@ -43,50 +43,50 @@ theorem isCauSeq_exp (z : ℂ) : IsCauSeq abs fun n => ∑ m in range n, z ^ m /

/-- The Cauchy sequence consisting of partial sums of the Taylor series of
the complex exponential function -/
----@[pp_nodot] Porting note: removed Porting note: removed
-- Porting note (#11180): removed `@[pp_nodot]`
def exp' (z : ℂ) : CauSeq ℂ Complex.abs :=
fun n => ∑ m in range n, z ^ m / m.factorial, isCauSeq_exp z⟩
#align complex.exp' Complex.exp'

/-- The complex exponential function, defined via its Taylor series -/
--@[pp_nodot] Porting note: removed
-- Porting note (#11180): removed `@[pp_nodot]`
-- Porting note: removed `irreducible` attribute, so I can prove things
def exp (z : ℂ) : ℂ :=
CauSeq.lim (exp' z)
#align complex.exp Complex.exp

/-- The complex sine function, defined via `exp` -/
--@[pp_nodot] Porting note: removed
-- Porting note (#11180): removed `@[pp_nodot]`
def sin (z : ℂ) : ℂ :=
(exp (-z * I) - exp (z * I)) * I / 2
#align complex.sin Complex.sin

/-- The complex cosine function, defined via `exp` -/
--@[pp_nodot] Porting note: removed
-- Porting note (#11180): removed `@[pp_nodot]`
def cos (z : ℂ) : ℂ :=
(exp (z * I) + exp (-z * I)) / 2
#align complex.cos Complex.cos

/-- The complex tangent function, defined as `sin z / cos z` -/
--@[pp_nodot] Porting note: removed
-- Porting note (#11180): removed `@[pp_nodot]`
def tan (z : ℂ) : ℂ :=
sin z / cos z
#align complex.tan Complex.tan

/-- The complex hyperbolic sine function, defined via `exp` -/
--@[pp_nodot] Porting note: removed
-- Porting note (#11180): removed `@[pp_nodot]`
def sinh (z : ℂ) : ℂ :=
(exp z - exp (-z)) / 2
#align complex.sinh Complex.sinh

/-- The complex hyperbolic cosine function, defined via `exp` -/
--@[pp_nodot] Porting note: removed
-- Porting note (#11180): removed `@[pp_nodot]`
def cosh (z : ℂ) : ℂ :=
(exp z + exp (-z)) / 2
#align complex.cosh Complex.cosh

/-- The complex hyperbolic tangent function, defined as `sinh z / cosh z` -/
--@[pp_nodot] Porting note: removed
-- Porting note (#11180): removed `@[pp_nodot]`
def tanh (z : ℂ) : ℂ :=
sinh z / cosh z
#align complex.tanh Complex.tanh
Expand All @@ -105,44 +105,44 @@ open Complex
noncomputable section

/-- The real exponential function, defined as the real part of the complex exponential -/
--@[pp_nodot] Porting note: removed
-- Porting note (#11180): removed `@[pp_nodot]`
nonrec def exp (x : ℝ) : ℝ :=
(exp x).re
#align real.exp Real.exp

/-- The real sine function, defined as the real part of the complex sine -/
--@[pp_nodot] Porting note: removed
-- Porting note (#11180): removed `@[pp_nodot]`
nonrec def sin (x : ℝ) : ℝ :=
(sin x).re
#align real.sin Real.sin

/-- The real cosine function, defined as the real part of the complex cosine -/
--@[pp_nodot] Porting note: removed
-- Porting note (#11180): removed `@[pp_nodot]`
nonrec def cos (x : ℝ) : ℝ :=
(cos x).re
#align real.cos Real.cos

/-- The real tangent function, defined as the real part of the complex tangent -/
--@[pp_nodot] Porting note: removed
-- Porting note (#11180): removed `@[pp_nodot]`
nonrec def tan (x : ℝ) : ℝ :=
(tan x).re
#align real.tan Real.tan

/-- The real hypebolic sine function, defined as the real part of the complex hyperbolic sine -/
--@[pp_nodot] Porting note: removed
-- Porting note (#11180): removed `@[pp_nodot]`
nonrec def sinh (x : ℝ) : ℝ :=
(sinh x).re
#align real.sinh Real.sinh

/-- The real hypebolic cosine function, defined as the real part of the complex hyperbolic cosine -/
--@[pp_nodot] Porting note: removed
-- Porting note (#11180): removed `@[pp_nodot]`
nonrec def cosh (x : ℝ) : ℝ :=
(cosh x).re
#align real.cosh Real.cosh

/-- The real hypebolic tangent function, defined as the real part of
the complex hyperbolic tangent -/
--@[pp_nodot] Porting note: removed
-- Porting note (#11180): removed `@[pp_nodot]`
nonrec def tanh (x : ℝ) : ℝ :=
(tanh x).re
#align real.tanh Real.tanh
Expand Down

0 comments on commit e0e36cd

Please sign in to comment.