@@ -164,7 +164,8 @@ bundle at all, just that it is a fiber bundle over a charted base space.
164
164
165
165
namespace Bundle
166
166
167
- /-- Characterization of `C^n` functions into a vector bundle. -/
167
+ /-- Characterization of `C^n` functions into a vector bundle.
168
+ Version at a point within a set. -/
168
169
theorem contMDiffWithinAt_totalSpace {f : M β TotalSpace F E} {s : Set M} {xβ : M} :
169
170
ContMDiffWithinAt IM (IB.prod π(π, F)) n f s xβ β
170
171
ContMDiffWithinAt IM IB n (fun x => (f x).proj) s xβ β§
@@ -185,7 +186,7 @@ theorem contMDiffWithinAt_totalSpace {f : M β TotalSpace F E} {s : Set M} {x
185
186
exact hx
186
187
Β· simp only [mfld_simps]
187
188
188
- /-- Characterization of `C^n` functions into a vector bundle. -/
189
+ /-- Characterization of `C^n` functions into a vector bundle. Version at a point. -/
189
190
theorem contMDiffAt_totalSpace {f : M β TotalSpace F E} {xβ : M} :
190
191
ContMDiffAt IM (IB.prod π(π, F)) n f xβ β
191
192
ContMDiffAt IM IB n (fun x β¦ (f x).proj) xβ β§
@@ -213,21 +214,22 @@ theorem contMDiff_proj : ContMDiff (IB.prod π(π, F)) IB n (Ο F E) := fun
213
214
214
215
theorem contMDiffOn_proj {s : Set (TotalSpace F E)} :
215
216
ContMDiffOn (IB.prod π(π, F)) IB n (Ο F E) s :=
216
- (Bundle. contMDiff_proj E).contMDiffOn
217
+ (contMDiff_proj E).contMDiffOn
217
218
218
219
theorem contMDiffAt_proj {p : TotalSpace F E} : ContMDiffAt (IB.prod π(π, F)) IB n (Ο F E) p :=
219
- (Bundle. contMDiff_proj E).contMDiffAt
220
+ (contMDiff_proj E).contMDiffAt
220
221
221
222
theorem contMDiffWithinAt_proj {s : Set (TotalSpace F E)} {p : TotalSpace F E} :
222
223
ContMDiffWithinAt (IB.prod π(π, F)) IB n (Ο F E) s p :=
223
- (Bundle. contMDiffAt_proj E).contMDiffWithinAt
224
+ (contMDiffAt_proj E).contMDiffWithinAt
224
225
225
226
variable (π) [β x, AddCommMonoid (E x)]
226
227
variable [β x, Module π (E x)] [VectorBundle π F E]
227
228
228
- theorem contMDiff_zeroSection : ContMDiff IB (IB.prod π(π, F)) n (zeroSection F E) := fun x β¦ by
229
+ theorem contMDiff_zeroSection : ContMDiff IB (IB.prod π(π, F)) n (zeroSection F E) := by
230
+ intro x
229
231
unfold zeroSection
230
- rw [Bundle. contMDiffAt_section]
232
+ rw [contMDiffAt_section]
231
233
apply (contMDiffAt_const (c := 0 )).congr_of_eventuallyEq
232
234
filter_upwards [(trivializationAt F E x).open_baseSet.mem_nhds
233
235
(mem_baseSet_trivializationAt F E x)] with y hy
0 commit comments