Skip to content

Commit e2b29fb

Browse files
committed
chore: adaptations for lean4#5542 (#17564)
In [lean4#5542](leanprover/lean4#5542) we are deprecating `inductive ... :=`, `structure ... :=`, and `class ... :=` for their `... where` counterparts.
1 parent 77a0e20 commit e2b29fb

File tree

44 files changed

+99
-97
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

44 files changed

+99
-97
lines changed

Mathlib/Algebra/Category/BialgebraCat/Basic.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -59,7 +59,7 @@ lemma of_counit {X : Type v} [Ring X] [Bialgebra R X] :
5959
/-- A type alias for `BialgHom` to avoid confusion between the categorical and
6060
algebraic spellings of composition. -/
6161
@[ext]
62-
structure Hom (V W : BialgebraCat.{v} R) :=
62+
structure Hom (V W : BialgebraCat.{v} R) where
6363
/-- The underlying `BialgHom` -/
6464
toBialgHom : V →ₐc[R] W
6565

Mathlib/Algebra/Category/CoalgebraCat/Basic.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -62,7 +62,7 @@ lemma of_counit {X : Type v} [AddCommGroup X] [Module R X] [Coalgebra R X] :
6262
/-- A type alias for `CoalgHom` to avoid confusion between the categorical and
6363
algebraic spellings of composition. -/
6464
@[ext]
65-
structure Hom (V W : CoalgebraCat.{v} R) :=
65+
structure Hom (V W : CoalgebraCat.{v} R) where
6666
/-- The underlying `CoalgHom` -/
6767
toCoalgHom : V →ₗc[R] W
6868

Mathlib/Algebra/Category/HopfAlgebraCat/Basic.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -58,7 +58,7 @@ lemma of_counit {X : Type v} [Ring X] [HopfAlgebra R X] :
5858
/-- A type alias for `BialgHom` to avoid confusion between the categorical and
5959
algebraic spellings of composition. -/
6060
@[ext]
61-
structure Hom (V W : HopfAlgebraCat.{v} R) :=
61+
structure Hom (V W : HopfAlgebraCat.{v} R) where
6262
/-- The underlying `BialgHom`. -/
6363
toBialgHom : V →ₐc[R] W
6464

Mathlib/Algebra/Homology/ShortComplex/SnakeLemma.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -381,7 +381,7 @@ variable (S₁ S₂ S₃ : SnakeInput C)
381381
/-- A morphism of snake inputs involve four morphisms of short complexes
382382
which make the obvious diagram commute. -/
383383
@[ext]
384-
structure Hom :=
384+
structure Hom where
385385
/-- a morphism between the zeroth lines -/
386386
f₀ : S₁.L₀ ⟶ S₂.L₀
387387
/-- a morphism between the first lines -/

Mathlib/Algebra/Lie/Killing.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -46,7 +46,7 @@ namespace LieAlgebra
4646
4747
NB: This is not standard terminology (the literature does not seem to name Lie algebras with this
4848
property). -/
49-
class IsKilling : Prop :=
49+
class IsKilling : Prop where
5050
/-- We say a Lie algebra is Killing if its Killing form is non-singular. -/
5151
killingCompl_top_eq_bot : LieIdeal.killingCompl R L ⊤ = ⊥
5252

Mathlib/Algebra/Lie/Weights/Basic.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -724,7 +724,7 @@ noncomputable instance Weight.instFintype [NoZeroSMulDivisors R M] [IsNoetherian
724724

725725
/-- A Lie module `M` of a Lie algebra `L` is triangularizable if the endomorhpism of `M` defined by
726726
any `x : L` is triangularizable. -/
727-
class IsTriangularizable : Prop :=
727+
class IsTriangularizable : Prop where
728728
iSup_eq_top : ∀ x, ⨆ φ, ⨆ k, (toEnd R L M x).genEigenspace φ k = ⊤
729729

730730
instance (L' : LieSubalgebra R L) [IsTriangularizable R L M] : IsTriangularizable R L' M where

Mathlib/Algebra/Lie/Weights/Linear.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -48,7 +48,7 @@ namespace LieModule
4848

4949
/-- A typeclass encoding the fact that a given Lie module has linear weights, vanishing on the
5050
derived ideal. -/
51-
class LinearWeights [LieAlgebra.IsNilpotent R L] : Prop :=
51+
class LinearWeights [LieAlgebra.IsNilpotent R L] : Prop where
5252
map_add : ∀ χ : L → R, genWeightSpace M χ ≠ ⊥ → ∀ x y, χ (x + y) = χ x + χ y
5353
map_smul : ∀ χ : L → R, genWeightSpace M χ ≠ ⊥ → ∀ (t : R) x, χ (t • x) = t • χ x
5454
map_lie : ∀ χ : L → R, genWeightSpace M χ ≠ ⊥ → ∀ x y : L, χ ⁅x, y⁆ = 0

Mathlib/Algebra/Quandle.lean

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -100,9 +100,9 @@ class Shelf (α : Type u) where
100100
A *unital shelf* is a shelf equipped with an element `1` such that, for all elements `x`,
101101
we have both `x ◃ 1` and `1 ◃ x` equal `x`.
102102
-/
103-
class UnitalShelf (α : Type u) extends Shelf α, One α :=
104-
(one_act : ∀ a : α, act 1 a = a)
105-
(act_one : ∀ a : α, act a 1 = a)
103+
class UnitalShelf (α : Type u) extends Shelf α, One α where
104+
one_act : ∀ a : α, act 1 a = a
105+
act_one : ∀ a : α, act a 1 = a
106106

107107
/-- The type of homomorphisms between shelves.
108108
This is also the notion of rack and quandle homomorphisms.

Mathlib/Analysis/Distribution/SchwartzSpace.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -579,7 +579,7 @@ open MeasureTheory Module
579579

580580
/-- A measure `μ` has temperate growth if there is an `n : ℕ` such that `(1 + ‖x‖) ^ (- n)` is
581581
`μ`-integrable. -/
582-
class _root_.MeasureTheory.Measure.HasTemperateGrowth (μ : Measure D) : Prop :=
582+
class _root_.MeasureTheory.Measure.HasTemperateGrowth (μ : Measure D) : Prop where
583583
exists_integrable : ∃ (n : ℕ), Integrable (fun x ↦ (1 + ‖x‖) ^ (- (n : ℝ))) μ
584584

585585
open Classical in

Mathlib/Analysis/NormedSpace/OperatorNorm/Mul.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -121,7 +121,7 @@ examples. Any algebra with an approximate identity (e.g., $$L^1$$) is also regul
121121
122122
This is a useful class because it gives rise to a nice norm on the unitization; in particular it is
123123
a C⋆-norm when the norm on `A` is a C⋆-norm. -/
124-
class _root_.RegularNormedAlgebra : Prop :=
124+
class _root_.RegularNormedAlgebra : Prop where
125125
/-- The left regular representation of the algebra on itself is an isometry. -/
126126
isometry_mul' : Isometry (mul 𝕜 𝕜')
127127

0 commit comments

Comments
 (0)