@@ -19,6 +19,7 @@ In this file we provide the following non-instances for norms on matrices:
19
19
* `Matrix.seminormedAddCommGroup`
20
20
* `Matrix.normedAddCommGroup`
21
21
* `Matrix.normedSpace`
22
+ * `Matrix.boundedSMul`
22
23
23
24
* The Frobenius norm:
24
25
@@ -27,12 +28,14 @@ In this file we provide the following non-instances for norms on matrices:
27
28
* `Matrix.frobeniusNormedSpace`
28
29
* `Matrix.frobeniusNormedRing`
29
30
* `Matrix.frobeniusNormedAlgebra`
31
+ * `Matrix.frobeniusBoundedSMul`
30
32
31
33
* The $L^\infty$ operator norm:
32
34
33
35
* `Matrix.linftyOpSeminormedAddCommGroup`
34
36
* `Matrix.linftyOpNormedAddCommGroup`
35
37
* `Matrix.linftyOpNormedSpace`
38
+ * `Matrix.linftyOpBoundedSMul`
36
39
* `Matrix.linftyOpNonUnitalSemiNormedRing`
37
40
* `Matrix.linftyOpSemiNormedRing`
38
41
* `Matrix.linftyOpNonUnitalNormedRing`
@@ -196,6 +199,11 @@ section NormedSpace
196
199
197
200
attribute [local instance] Matrix.seminormedAddCommGroup
198
201
202
+ /-- This applies to the sup norm of sup norm. -/
203
+ protected theorem boundedSMul [SeminormedRing R] [SeminormedAddCommGroup α] [Module R α]
204
+ [BoundedSMul R α] : BoundedSMul R (Matrix m n α) :=
205
+ Pi.instBoundedSMul
206
+
199
207
variable [NormedField R] [SeminormedAddCommGroup α] [NormedSpace R α]
200
208
201
209
/-- Normed space instance (using sup norm of sup norm) for matrices over a normed space. Not
@@ -238,6 +246,13 @@ protected def linftyOpNormedAddCommGroup [NormedAddCommGroup α] :
238
246
(by infer_instance : NormedAddCommGroup (m → PiLp 1 fun j : n => α))
239
247
#align matrix.linfty_op_normed_add_comm_group Matrix.linftyOpNormedAddCommGroup
240
248
249
+ /-- This applies to the sup norm of L1 norm. -/
250
+ @[local instance]
251
+ protected theorem linftyOpBoundedSMul
252
+ [SeminormedRing R] [SeminormedAddCommGroup α] [Module R α] [BoundedSMul R α] :
253
+ BoundedSMul R (Matrix m n α) :=
254
+ (by infer_instance : BoundedSMul R (m → PiLp 1 fun j : n => α))
255
+
241
256
/-- Normed space instance (using sup norm of L1 norm) for matrices over a normed space. Not
242
257
declared as an instance because there are several natural choices for defining the norm of a
243
258
matrix. -/
@@ -485,6 +500,13 @@ def frobeniusNormedAddCommGroup [NormedAddCommGroup α] : NormedAddCommGroup (Ma
485
500
(by infer_instance : NormedAddCommGroup (PiLp 2 fun i : m => PiLp 2 fun j : n => α))
486
501
#align matrix.frobenius_normed_add_comm_group Matrix.frobeniusNormedAddCommGroup
487
502
503
+ /-- This applies to the frobenius norm. -/
504
+ @[local instance]
505
+ theorem frobeniusBoundedSMul [SeminormedRing R] [SeminormedAddCommGroup α] [Module R α]
506
+ [BoundedSMul R α] :
507
+ BoundedSMul R (Matrix m n α) :=
508
+ (by infer_instance : BoundedSMul R (PiLp 2 fun i : m => PiLp 2 fun j : n => α))
509
+
488
510
/-- Normed space instance (using frobenius norm) for matrices over a normed space. Not
489
511
declared as an instance because there are several natural choices for defining the norm of a
490
512
matrix. -/
0 commit comments