@@ -23,7 +23,7 @@ Main definitions:
23
23
24
24
## TODO
25
25
26
- - definition of conductor
26
+ - properties of the conductor
27
27
28
28
## Tags
29
29
@@ -74,4 +74,44 @@ lemma changeLevel_trans {m d : ℕ} (hm : n ∣ m) (hd : m ∣ d) :
74
74
changeLevel (dvd_trans hm hd) χ = changeLevel hd (changeLevel hm χ) := by
75
75
simp [changeLevel_def, MonoidHom.comp_assoc, ZMod.unitsMap_comp]
76
76
77
+ lemma changeLevel_eq_cast_of_dvd {m : ℕ} (hm : n ∣ m) (a : Units (ZMod m)) :
78
+ (changeLevel hm χ) a = χ a := by
79
+ simpa [changeLevel_def, Function.comp_apply, MonoidHom.coe_comp] using
80
+ toUnitHom_eq_char' _ <| ZMod.IsUnit_cast_of_dvd hm a
81
+
82
+ /-- `χ` of level `n` factors through a Dirichlet character `χ₀` of level `d` if `d ∣ n` and
83
+ `χ₀ = χ ∘ (ZMod n → ZMod d)`. -/
84
+ def FactorsThrough (d : ℕ) : Prop :=
85
+ ∃ (h : d ∣ n) (χ₀ : DirichletCharacter R d), χ = changeLevel h χ₀
86
+
87
+ namespace FactorsThrough
88
+
89
+ /-- The fact that `d` divides `n` when `χ` factors through a Dirichlet character at level `d` -/
90
+ lemma dvd {d : ℕ} (h : FactorsThrough χ d) : d ∣ n := h.1
91
+
92
+ /-- The Dirichlet character at level `d` through which `χ` factors -/
93
+ noncomputable
94
+ def χ₀ {d : ℕ} (h : FactorsThrough χ d) : DirichletCharacter R d := Classical.choose h.2
95
+
96
+ /-- The fact that `χ` factors through `χ₀` of level `d` -/
97
+ lemma eq_changeLevel {d : ℕ} (h : FactorsThrough χ d) : χ = changeLevel h.dvd h.χ₀ :=
98
+ Classical.choose_spec h.2
99
+
100
+ lemma same_level : FactorsThrough χ n := ⟨dvd_refl n, χ, (changeLevel_self χ).symm⟩
101
+
102
+ end FactorsThrough
103
+
104
+ /-- The set of natural numbers for which a Dirichlet character is periodic. -/
105
+ def conductorSet : Set ℕ := {x : ℕ | FactorsThrough χ x}
106
+
107
+ lemma mem_conductorSet_iff {x : ℕ} : x ∈ conductorSet χ ↔ FactorsThrough χ x := Iff.refl _
108
+
109
+ lemma level_mem_conductorSet : n ∈ conductorSet χ := FactorsThrough.same_level χ
110
+
111
+ lemma mem_conductorSet_dvd {x : ℕ} (hx : x ∈ conductorSet χ) : x ∣ n := hx.dvd
112
+
113
+ /-- The minimum natural number `n` for which a Dirichlet character is periodic.
114
+ The Dirichlet character `χ` can then alternatively be reformulated on `ℤ/nℤ`. -/
115
+ noncomputable def conductor : ℕ := sInf (conductorSet χ)
116
+
77
117
end DirichletCharacter
0 commit comments