@@ -141,7 +141,7 @@ end OperationsAndOrder
141
141
142
142
section OperationsAndInfty
143
143
144
- variable {α : Type *}
144
+ variable {α : Type *} {n : ℕ}
145
145
146
146
@[simp] theorem add_eq_top : a + b = ∞ ↔ a = ∞ ∨ b = ∞ := WithTop.add_eq_top
147
147
@@ -186,9 +186,6 @@ theorem top_mul' : ∞ * a = if a = 0 then 0 else ∞ := by convert WithTop.top_
186
186
187
187
theorem top_mul_top : ∞ * ∞ = ∞ := WithTop.top_mul_top
188
188
189
- -- TODO: assume `n ≠ 0` instead of `0 < n`
190
- theorem top_pow {n : ℕ} (n_pos : 0 < n) : (∞ : ℝ≥0 ∞) ^ n = ∞ := WithTop.top_pow n_pos
191
-
192
189
theorem mul_eq_top : a * b = ∞ ↔ a ≠ 0 ∧ b = ∞ ∨ a = ∞ ∧ b ≠ 0 :=
193
190
WithTop.mul_eq_top_iff
194
191
@@ -223,22 +220,20 @@ theorem mul_pos_iff : 0 < a * b ↔ 0 < a ∧ 0 < b :=
223
220
theorem mul_pos (ha : a ≠ 0 ) (hb : b ≠ 0 ) : 0 < a * b :=
224
221
mul_pos_iff.2 ⟨pos_iff_ne_zero.2 ha, pos_iff_ne_zero.2 hb⟩
225
222
226
- -- TODO: generalize to ` WithTop`
227
- @[simp] theorem pow_eq_top_iff {n : ℕ} : a ^ n = ∞ ↔ a = ∞ ∧ n ≠ 0 := by
228
- rcases n.eq_zero_or_pos with rfl | (hn : 0 < n)
229
- · simp
230
- · induction a
231
- · simp only [Ne, hn.ne', top_pow hn, not_false_eq_true, and_self]
232
- · simp only [← coe_pow, coe_ne_top, false_and]
223
+ @[simp] lemma top_pow {n : ℕ} (hn : n ≠ 0 ) : (∞ : ℝ≥ 0 ∞) ^ n = ∞ := WithTop.top_pow hn
224
+
225
+ @[simp] lemma pow_eq_top_iff : a ^ n = ∞ ↔ a = ∞ ∧ n ≠ 0 := WithTop.pow_eq_top_iff
226
+
227
+ lemma pow_ne_top_iff : a ^ n ≠ ∞ ↔ a ≠ ∞ ∨ n = 0 := WithTop.pow_ne_top_iff
228
+
229
+ @[simp] lemma pow_lt_top_iff : a ^ n < ∞ ↔ a < ∞ ∨ n = 0 := WithTop.pow_lt_top_iff
233
230
234
- theorem pow_eq_top (n : ℕ) (h : a ^ n = ∞) : a = ∞ :=
235
- (pow_eq_top_iff.1 h).1
231
+ lemma eq_top_of_pow (n : ℕ) (ha : a ^ n = ∞) : a = ∞ := WithTop.eq_top_of_pow n ha
236
232
237
- theorem pow_ne_top (h : a ≠ ∞) {n : ℕ} : a ^ n ≠ ∞ :=
238
- mt (pow_eq_top n) h
233
+ @[deprecated (since := "2025-04-24")] alias pow_eq_top := eq_top_of_pow
239
234
240
- theorem pow_lt_top : a < ∞ → ∀ n : ℕ, a ^ n < ∞ := by
241
- simpa only [lt_top_iff_ne_top] using pow_ne_top
235
+ lemma pow_ne_top (ha : a ≠ ∞) : a ^ n ≠ ∞ := WithTop.pow_ne_top ha
236
+ lemma pow_lt_top (ha : a < ∞) : a ^ n < ∞ := WithTop.pow_lt_top ha
242
237
243
238
end OperationsAndInfty
244
239
0 commit comments