@@ -19,8 +19,7 @@ section ConditionallyCompleteLinearOrder
19
19
variable [ConditionallyCompleteLinearOrder α] [Nonempty ι] {f : ι → α} {s : Set α} {x : α}
20
20
21
21
lemma csSup_mem_of_not_isSuccPrelimit
22
- (hne : s.Nonempty) (hbdd : BddAbove s) (hlim : ¬ IsSuccPrelimit (sSup s)) :
23
- sSup s ∈ s := by
22
+ (hne : s.Nonempty) (hbdd : BddAbove s) (hlim : ¬ IsSuccPrelimit (sSup s)) : sSup s ∈ s := by
24
23
obtain ⟨y, hy⟩ := not_forall_not.mp hlim
25
24
obtain ⟨i, his, hi⟩ := exists_lt_of_lt_csSup hne hy.lt
26
25
exact eq_of_le_of_not_lt (le_csSup hbdd his) (hy.2 hi) ▸ his
@@ -29,8 +28,7 @@ lemma csSup_mem_of_not_isSuccPrelimit
29
28
alias csSup_mem_of_not_isSuccLimit := csSup_mem_of_not_isSuccPrelimit
30
29
31
30
lemma csInf_mem_of_not_isPredPrelimit
32
- (hne : s.Nonempty) (hbdd : BddBelow s) (hlim : ¬ IsPredPrelimit (sInf s)) :
33
- sInf s ∈ s := by
31
+ (hne : s.Nonempty) (hbdd : BddBelow s) (hlim : ¬ IsPredPrelimit (sInf s)) : sInf s ∈ s := by
34
32
obtain ⟨y, hy⟩ := not_forall_not.mp hlim
35
33
obtain ⟨i, his, hi⟩ := exists_lt_of_csInf_lt hne hy.lt
36
34
exact eq_of_le_of_not_lt (csInf_le hbdd his) (hy.2 · hi) ▸ his
@@ -39,17 +37,15 @@ lemma csInf_mem_of_not_isPredPrelimit
39
37
alias csInf_mem_of_not_isPredLimit := csInf_mem_of_not_isPredPrelimit
40
38
41
39
lemma exists_eq_ciSup_of_not_isSuccPrelimit
42
- (hf : BddAbove (Set.range f)) (hf' : ¬ IsSuccPrelimit (⨆ i, f i)) :
43
- ∃ i, f i = ⨆ i, f i :=
44
- csSup_mem_of_not_isSuccPrelimit (Set.range_nonempty f) hf hf'
40
+ (hf : BddAbove (range f)) (hf' : ¬ IsSuccPrelimit (⨆ i, f i)) : ∃ i, f i = ⨆ i, f i :=
41
+ csSup_mem_of_not_isSuccPrelimit (range_nonempty f) hf hf'
45
42
46
43
@[deprecated exists_eq_ciSup_of_not_isSuccPrelimit (since := "2024-09-05")]
47
44
alias exists_eq_ciSup_of_not_isSuccLimit := exists_eq_ciSup_of_not_isSuccPrelimit
48
45
49
46
lemma exists_eq_ciInf_of_not_isPredPrelimit
50
- (hf : BddBelow (Set.range f)) (hf' : ¬ IsPredPrelimit (⨅ i, f i)) :
51
- ∃ i, f i = ⨅ i, f i :=
52
- csInf_mem_of_not_isPredPrelimit (Set.range_nonempty f) hf hf'
47
+ (hf : BddBelow (range f)) (hf' : ¬ IsPredPrelimit (⨅ i, f i)) : ∃ i, f i = ⨅ i, f i :=
48
+ csInf_mem_of_not_isPredPrelimit (range_nonempty f) hf hf'
53
49
54
50
@[deprecated exists_eq_ciInf_of_not_isPredPrelimit (since := "2024-09-05")]
55
51
alias exists_eq_ciInf_of_not_isPredLimit := exists_eq_ciInf_of_not_isPredPrelimit
@@ -69,15 +65,15 @@ lemma IsGLB.mem_of_nonempty_of_not_isPredPrelimit
69
65
alias IsGLB.mem_of_nonempty_of_not_isPredLimit := IsGLB.mem_of_nonempty_of_not_isPredPrelimit
70
66
71
67
lemma IsLUB.exists_of_nonempty_of_not_isSuccPrelimit
72
- (hf : IsLUB (Set. range f) x) (hx : ¬ IsSuccPrelimit x) :
73
- ∃ i, f i = x := hf.mem_of_nonempty_of_not_isSuccPrelimit (Set. range_nonempty f) hx
68
+ (hf : IsLUB (range f) x) (hx : ¬ IsSuccPrelimit x) : ∃ i, f i = x :=
69
+ hf.mem_of_nonempty_of_not_isSuccPrelimit (range_nonempty f) hx
74
70
75
71
@[deprecated IsLUB.exists_of_nonempty_of_not_isSuccPrelimit (since := "2024-09-05")]
76
72
alias IsLUB.exists_of_nonempty_of_not_isSuccLimit := IsLUB.exists_of_nonempty_of_not_isSuccPrelimit
77
73
78
74
lemma IsGLB.exists_of_nonempty_of_not_isPredPrelimit
79
- (hf : IsGLB (Set. range f) x) (hx : ¬ IsPredPrelimit x) :
80
- ∃ i, f i = x := hf.mem_of_nonempty_of_not_isPredPrelimit (Set. range_nonempty f) hx
75
+ (hf : IsGLB (range f) x) (hx : ¬ IsPredPrelimit x) : ∃ i, f i = x :=
76
+ hf.mem_of_nonempty_of_not_isPredPrelimit (range_nonempty f) hx
81
77
82
78
@[deprecated IsGLB.exists_of_nonempty_of_not_isPredPrelimit (since := "2024-09-05")]
83
79
alias IsGLB.exists_of_nonempty_of_not_isPredLimit := IsGLB.exists_of_nonempty_of_not_isPredPrelimit
@@ -110,9 +106,8 @@ variable [ConditionallyCompleteLinearOrderBot α] {f : ι → α} {s : Set α} {
110
106
111
107
/-- See `csSup_mem_of_not_isSuccPrelimit` for the `ConditionallyCompleteLinearOrder` version. -/
112
108
lemma csSup_mem_of_not_isSuccPrelimit'
113
- (hbdd : BddAbove s) (hlim : ¬ IsSuccPrelimit (sSup s)) :
114
- sSup s ∈ s := by
115
- obtain (rfl|hs) := s.eq_empty_or_nonempty
109
+ (hbdd : BddAbove s) (hlim : ¬ IsSuccPrelimit (sSup s)) : sSup s ∈ s := by
110
+ obtain rfl | hs := s.eq_empty_or_nonempty
116
111
· simp [isSuccPrelimit_bot] at hlim
117
112
· exact csSup_mem_of_not_isSuccPrelimit hs hbdd hlim
118
113
@@ -122,24 +117,23 @@ alias csSup_mem_of_not_isSuccLimit' := csSup_mem_of_not_isSuccPrelimit'
122
117
/-- See `exists_eq_ciSup_of_not_isSuccPrelimit` for the
123
118
`ConditionallyCompleteLinearOrder` version. -/
124
119
lemma exists_eq_ciSup_of_not_isSuccPrelimit'
125
- (hf : BddAbove (Set.range f)) (hf' : ¬ IsSuccPrelimit (⨆ i, f i)) :
126
- ∃ i, f i = ⨆ i, f i :=
120
+ (hf : BddAbove (range f)) (hf' : ¬ IsSuccPrelimit (⨆ i, f i)) : ∃ i, f i = ⨆ i, f i :=
127
121
csSup_mem_of_not_isSuccPrelimit' hf hf'
128
122
129
123
@[deprecated exists_eq_ciSup_of_not_isSuccPrelimit' (since := "2024-09-05")]
130
124
alias exists_eq_ciSup_of_not_isSuccLimit' := exists_eq_ciSup_of_not_isSuccPrelimit'
131
125
132
- lemma IsLUB.mem_of_not_isSuccPrelimit (hs : IsLUB s x) (hx : ¬ IsSuccPrelimit x) :
133
- x ∈ s := by
134
- obtain (rfl|hs') := s.eq_empty_or_nonempty
126
+ lemma IsLUB.mem_of_not_isSuccPrelimit (hs : IsLUB s x) (hx : ¬ IsSuccPrelimit x) : x ∈ s := by
127
+ obtain rfl | hs' := s.eq_empty_or_nonempty
135
128
· simp [show x = ⊥ by simpa using hs, isSuccPrelimit_bot] at hx
136
129
· exact hs.mem_of_nonempty_of_not_isSuccPrelimit hs' hx
137
130
138
131
@[deprecated IsLUB.mem_of_not_isSuccPrelimit (since := "2024-09-05")]
139
132
alias IsLUB.mem_of_not_isSuccLimit := IsLUB.mem_of_not_isSuccPrelimit
140
133
141
- lemma IsLUB.exists_of_not_isSuccPrelimit (hf : IsLUB (Set.range f) x) (hx : ¬ IsSuccPrelimit x) :
142
- ∃ i, f i = x := hf.mem_of_not_isSuccPrelimit hx
134
+ lemma IsLUB.exists_of_not_isSuccPrelimit (hf : IsLUB (range f) x) (hx : ¬ IsSuccPrelimit x) :
135
+ ∃ i, f i = x :=
136
+ hf.mem_of_not_isSuccPrelimit hx
143
137
144
138
@[deprecated IsLUB.exists_of_not_isSuccPrelimit (since := "2024-09-05")]
145
139
alias IsLUB.exists_of_not_isSuccLimit := IsLUB.exists_of_not_isSuccPrelimit
@@ -175,17 +169,15 @@ end ConditionallyCompleteLinearOrderBot
175
169
section CompleteLinearOrder
176
170
variable [CompleteLinearOrder α] {s : Set α} {f : ι → α} {x : α}
177
171
178
- lemma sSup_mem_of_not_isSuccPrelimit (hlim : ¬ IsSuccPrelimit (sSup s)) :
179
- sSup s ∈ s := by
172
+ lemma sSup_mem_of_not_isSuccPrelimit (hlim : ¬ IsSuccPrelimit (sSup s)) : sSup s ∈ s := by
180
173
obtain ⟨y, hy⟩ := not_forall_not.mp hlim
181
174
obtain ⟨i, his, hi⟩ := lt_sSup_iff.mp hy.lt
182
175
exact eq_of_le_of_not_lt (le_sSup his) (hy.2 hi) ▸ his
183
176
184
177
@[deprecated sSup_mem_of_not_isSuccPrelimit (since := "2024-09-05")]
185
178
alias sSup_mem_of_not_isSuccLimit := sSup_mem_of_not_isSuccPrelimit
186
179
187
- lemma sInf_mem_of_not_isPredPrelimit (hlim : ¬ IsPredPrelimit (sInf s)) :
188
- sInf s ∈ s := by
180
+ lemma sInf_mem_of_not_isPredPrelimit (hlim : ¬ IsPredPrelimit (sInf s)) : sInf s ∈ s := by
189
181
obtain ⟨y, hy⟩ := not_forall_not.mp hlim
190
182
obtain ⟨i, his, hi⟩ := sInf_lt_iff.mp hy.lt
191
183
exact eq_of_le_of_not_lt (sInf_le his) (hy.2 · hi) ▸ his
@@ -207,15 +199,15 @@ lemma exists_eq_iInf_of_not_isPredPrelimit (hf : ¬ IsPredPrelimit (⨅ i, f i))
207
199
@[deprecated exists_eq_iInf_of_not_isPredPrelimit (since := "2024-09-05")]
208
200
alias exists_eq_iInf_of_not_isPredLimit := exists_eq_iInf_of_not_isPredPrelimit
209
201
210
- lemma IsGLB.mem_of_not_isPredPrelimit (hs : IsGLB s x) (hx : ¬ IsPredPrelimit x) :
211
- x ∈ s :=
202
+ lemma IsGLB.mem_of_not_isPredPrelimit (hs : IsGLB s x) (hx : ¬ IsPredPrelimit x) : x ∈ s :=
212
203
hs.sInf_eq ▸ sInf_mem_of_not_isPredPrelimit (hs.sInf_eq ▸ hx)
213
204
214
205
@[deprecated IsGLB.mem_of_not_isPredPrelimit (since := "2024-09-05")]
215
206
alias IsGLB.mem_of_not_isPredLimit := IsGLB.mem_of_not_isPredPrelimit
216
207
217
- lemma IsGLB.exists_of_not_isPredPrelimit (hf : IsGLB (Set.range f) x) (hx : ¬ IsPredPrelimit x) :
218
- ∃ i, f i = x := hf.mem_of_not_isPredPrelimit hx
208
+ lemma IsGLB.exists_of_not_isPredPrelimit (hf : IsGLB (range f) x) (hx : ¬ IsPredPrelimit x) :
209
+ ∃ i, f i = x :=
210
+ hf.mem_of_not_isPredPrelimit hx
219
211
220
212
@[deprecated IsGLB.exists_of_not_isPredPrelimit (since := "2024-09-05")]
221
213
alias IsGLB.exists_of_not_isPredLimit := IsGLB.exists_of_not_isPredPrelimit
0 commit comments