@@ -286,7 +286,7 @@ alias nhdsWithin_compl_singleton_sup_pure := nhdsNE_sup_pure
286
286
@[simp]
287
287
theorem pure_sup_nhdsNE (a : α) : pure a ⊔ 𝓝[≠] a = 𝓝 a := by rw [← sup_comm, nhdsNE_sup_pure]
288
288
289
- theorem nhdsWithin_prod {α : Type *} [TopologicalSpace α] {β : Type *} [TopologicalSpace β]
289
+ theorem nhdsWithin_prod [TopologicalSpace β]
290
290
{s u : Set α} {t v : Set β} {a : α} {b : β} (hu : u ∈ 𝓝[s] a) (hv : v ∈ 𝓝[t] b) :
291
291
u ×ˢ v ∈ 𝓝[s ×ˢ t] (a, b) := by
292
292
rw [nhdsWithin_prod_eq]
@@ -455,7 +455,7 @@ theorem Filter.EventuallyEq.eq_of_nhdsWithin {s : Set α} {f g : α → β} {a :
455
455
(hmem : a ∈ s) : f a = g a :=
456
456
h.self_of_nhdsWithin hmem
457
457
458
- theorem eventually_nhdsWithin_of_eventually_nhds {α : Type *} [TopologicalSpace α] { s : Set α}
458
+ theorem eventually_nhdsWithin_of_eventually_nhds {s : Set α}
459
459
{a : α} {p : α → Prop } (h : ∀ᶠ x in 𝓝 a, p x) : ∀ᶠ x in 𝓝[s] a, p x :=
460
460
mem_nhdsWithin_of_mem_nhds h
461
461
@@ -993,10 +993,8 @@ theorem Continuous.comp_continuousOn {g : β → γ} {f : α → β} {s : Set α
993
993
/-- Variant of `Continuous.comp_continuousOn` using the form `fun y ↦ g (f y)`
994
994
instead of `g ∘ f`. -/
995
995
@[fun_prop]
996
- theorem Continuous.comp_continuousOn'
997
- {α β γ : Type *} [TopologicalSpace α] [TopologicalSpace β] [TopologicalSpace γ] {g : β → γ}
998
- {f : α → β} {s : Set α} (hg : Continuous g) (hf : ContinuousOn f s) :
999
- ContinuousOn (fun x ↦ g (f x)) s :=
996
+ theorem Continuous.comp_continuousOn' {g : β → γ} {f : α → β} {s : Set α} (hg : Continuous g)
997
+ (hf : ContinuousOn f s) : ContinuousOn (fun x ↦ g (f x)) s :=
1000
998
hg.comp_continuousOn hf
1001
999
1002
1000
theorem ContinuousOn.comp_continuous {g : β → γ} {f : α → β} {s : Set β} (hg : ContinuousOn g s)
@@ -1495,9 +1493,7 @@ theorem continuousOn_piecewise_ite [∀ x, Decidable (x ∈ t)]
1495
1493
1496
1494
/-- If `f` is continuous on an open set `s` and continuous at each point of another
1497
1495
set `t` then `f` is continuous on `s ∪ t`. -/
1498
- lemma ContinuousOn.union_continuousAt
1499
- {X Y : Type *} [TopologicalSpace X] [TopologicalSpace Y]
1500
- {s t : Set X} {f : X → Y} (s_op : IsOpen s)
1496
+ lemma ContinuousOn.union_continuousAt {f : α → β} (s_op : IsOpen s)
1501
1497
(hs : ContinuousOn f s) (ht : ∀ x ∈ t, ContinuousAt f x) :
1502
1498
ContinuousOn f (s ∪ t) :=
1503
1499
continuousOn_of_forall_continuousAt <| fun _ hx => hx.elim
@@ -1506,8 +1502,8 @@ lemma ContinuousOn.union_continuousAt
1506
1502
1507
1503
open Classical in
1508
1504
/-- If a function is continuous on two closed sets, it is also continuous on their union. -/
1509
- theorem ContinuousOn.union_isClosed {X Y : Type *} [TopologicalSpace X] [TopologicalSpace Y]
1510
- {s t : Set X} (hs : IsClosed s) ( ht : IsClosed t) {f : X → Y } (hfs : ContinuousOn f s)
1505
+ theorem ContinuousOn.union_isClosed (hs : IsClosed s)
1506
+ ( ht : IsClosed t) {f : α → β } (hfs : ContinuousOn f s)
1511
1507
(hft : ContinuousOn f t) : ContinuousOn f (s ∪ t) := by
1512
1508
refine fun x hx ↦ .union ?_ ?_
1513
1509
· refine if hx : x ∈ s then hfs x hx else continuousWithinAt_of_not_mem_closure ?_
0 commit comments