File tree Expand file tree Collapse file tree 1 file changed +8
-6
lines changed
Mathlib/Algebra/Divisibility Expand file tree Collapse file tree 1 file changed +8
-6
lines changed Original file line number Diff line number Diff line change @@ -130,7 +130,7 @@ theorem exists_dvd_and_dvd_of_dvd_mul [DecompositionMonoid α] {b c a : α} (H :
130
130
end Semigroup
131
131
132
132
section Monoid
133
- variable [Monoid α] {a b : α} {m n : ℕ}
133
+ variable [Monoid α] {a b c : α} {m n : ℕ}
134
134
135
135
@[refl, simp]
136
136
theorem dvd_refl (a : α) : a ∣ a :=
@@ -167,6 +167,12 @@ alias Dvd.dvd.pow := dvd_pow
167
167
lemma dvd_pow_self (a : α) {n : ℕ} (hn : n ≠ 0 ) : a ∣ a ^ n := dvd_rfl.pow hn
168
168
#align dvd_pow_self dvd_pow_self
169
169
170
+ theorem mul_dvd_mul_left (a : α) (h : b ∣ c) : a * b ∣ a * c := by
171
+ obtain ⟨d, rfl⟩ := h
172
+ use d
173
+ rw [mul_assoc]
174
+ #align mul_dvd_mul_left mul_dvd_mul_left
175
+
170
176
end Monoid
171
177
172
178
section CommSemigroup
@@ -228,15 +234,11 @@ section CommMonoid
228
234
229
235
variable [CommMonoid α] {a b : α}
230
236
231
- theorem mul_dvd_mul_left (a : α) {b c : α} (h : b ∣ c) : a * b ∣ a * c :=
232
- mul_dvd_mul (dvd_refl a) h
233
- #align mul_dvd_mul_left mul_dvd_mul_left
234
-
235
237
theorem mul_dvd_mul_right (h : a ∣ b) (c : α) : a * c ∣ b * c :=
236
238
mul_dvd_mul h (dvd_refl c)
237
239
#align mul_dvd_mul_right mul_dvd_mul_right
238
240
239
- theorem pow_dvd_pow_of_dvd {a b : α} (h : a ∣ b) : ∀ n : ℕ, a ^ n ∣ b ^ n
241
+ theorem pow_dvd_pow_of_dvd (h : a ∣ b) : ∀ n : ℕ, a ^ n ∣ b ^ n
240
242
| 0 => by rw [pow_zero, pow_zero]
241
243
| n + 1 => by
242
244
rw [pow_succ, pow_succ]
You can’t perform that action at this time.
0 commit comments