Skip to content

Commit eb655f8

Browse files
committed
feat: @[simp] Icc a b ∈ 𝓝 x (#11178)
Currently doesn't simplify since `interior_Icc` goes the other way. We were using it in PrimeNumberTheoremAnd for things like "point does not lie on boundary of rectangle". Co-authored-by: L Lllvvuu <git@llllvvuu.dev>
1 parent 349b843 commit eb655f8

File tree

1 file changed

+13
-0
lines changed

1 file changed

+13
-0
lines changed

β€ŽMathlib/Topology/Order/Basic.leanβ€Ž

Lines changed: 13 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -1542,16 +1542,29 @@ theorem interior_Icc [NoMinOrder Ξ±] [NoMaxOrder Ξ±] {a b : Ξ±} : interior (Icc
15421542
rw [← Ici_inter_Iic, interior_inter, interior_Ici, interior_Iic, Ioi_inter_Iio]
15431543
#align interior_Icc interior_Icc
15441544

1545+
@[simp]
1546+
theorem Icc_mem_nhds_iff [NoMinOrder Ξ±] [NoMaxOrder Ξ±] {a b x : Ξ±} :
1547+
Icc a b ∈ 𝓝 x ↔ x ∈ Ioo a b := by
1548+
rw [← interior_Icc, mem_interior_iff_mem_nhds]
1549+
15451550
@[simp]
15461551
theorem interior_Ico [NoMinOrder Ξ±] {a b : Ξ±} : interior (Ico a b) = Ioo a b := by
15471552
rw [← Ici_inter_Iio, interior_inter, interior_Ici, interior_Iio, Ioi_inter_Iio]
15481553
#align interior_Ico interior_Ico
15491554

1555+
@[simp]
1556+
theorem Ico_mem_nhds_iff [NoMinOrder Ξ±] {a b x : Ξ±} : Ico a b ∈ 𝓝 x ↔ x ∈ Ioo a b := by
1557+
rw [← interior_Ico, mem_interior_iff_mem_nhds]
1558+
15501559
@[simp]
15511560
theorem interior_Ioc [NoMaxOrder Ξ±] {a b : Ξ±} : interior (Ioc a b) = Ioo a b := by
15521561
rw [← Ioi_inter_Iic, interior_inter, interior_Ioi, interior_Iic, Ioi_inter_Iio]
15531562
#align interior_Ioc interior_Ioc
15541563

1564+
@[simp]
1565+
theorem Ioc_mem_nhds_iff [NoMaxOrder Ξ±] {a b x : Ξ±} : Ioc a b ∈ 𝓝 x ↔ x ∈ Ioo a b := by
1566+
rw [← interior_Ioc, mem_interior_iff_mem_nhds]
1567+
15551568
theorem closure_interior_Icc {a b : Ξ±} (h : a β‰  b) : closure (interior (Icc a b)) = Icc a b :=
15561569
(closure_minimal interior_subset isClosed_Icc).antisymm <|
15571570
calc

0 commit comments

Comments
Β (0)