@@ -138,7 +138,7 @@ theorem edist_le_mul (h : LipschitzWith K f) (x y : α) : edist (f x) (f y) ≤
138
138
139
139
theorem edist_le_mul_of_le (h : LipschitzWith K f) (hr : edist x y ≤ r) :
140
140
edist (f x) (f y) ≤ K * r :=
141
- (h x y).trans <| ENNReal. mul_left_mono hr
141
+ (h x y).trans <| mul_left_mono hr
142
142
143
143
theorem edist_lt_mul_of_lt (h : LipschitzWith K f) (hK : K ≠ 0 ) (hr : edist x y < r) :
144
144
edist (f x) (f y) < K * r :=
@@ -163,7 +163,7 @@ protected theorem of_edist_le (h : ∀ x y, edist (f x) (f y) ≤ edist x y) : L
163
163
fun x y => by simp only [ENNReal.coe_one, one_mul, h]
164
164
165
165
protected theorem weaken (hf : LipschitzWith K f) {K' : ℝ≥0 } (h : K ≤ K') : LipschitzWith K' f :=
166
- fun x y => le_trans (hf x y) <| ENNReal. mul_right_mono (ENNReal.coe_le_coe.2 h)
166
+ fun x y => le_trans (hf x y) <| mul_right_mono (ENNReal.coe_le_coe.2 h)
167
167
168
168
theorem ediam_image_le (hf : LipschitzWith K f) (s : Set α) :
169
169
EMetric.diam (f '' s) ≤ K * EMetric.diam s := by
@@ -218,7 +218,7 @@ protected theorem comp {Kf Kg : ℝ≥0} {f : β → γ} {g : α → β} (hf : L
218
218
(hg : LipschitzWith Kg g) : LipschitzWith (Kf * Kg) (f ∘ g) := fun x y =>
219
219
calc
220
220
edist (f (g x)) (f (g y)) ≤ Kf * edist (g x) (g y) := hf _ _
221
- _ ≤ Kf * (Kg * edist x y) := ENNReal. mul_left_mono (hg _ _)
221
+ _ ≤ Kf * (Kg * edist x y) := mul_left_mono (hg _ _)
222
222
_ = (Kf * Kg : ℝ≥0 ) * edist x y := by rw [← mul_assoc, ENNReal.coe_mul]
223
223
224
224
theorem comp_lipschitzOnWith {Kf Kg : ℝ≥0 } {f : β → γ} {g : α → β} {s : Set α}
@@ -235,7 +235,7 @@ protected theorem prod_snd : LipschitzWith 1 (@Prod.snd α β) :=
235
235
protected theorem prod {f : α → β} {Kf : ℝ≥0 } (hf : LipschitzWith Kf f) {g : α → γ} {Kg : ℝ≥0 }
236
236
(hg : LipschitzWith Kg g) : LipschitzWith (max Kf Kg) fun x => (f x, g x) := by
237
237
intro x y
238
- rw [ENNReal.coe_mono.map_max, Prod.edist_eq, ENNReal. max_mul]
238
+ rw [ENNReal.coe_mono.map_max, Prod.edist_eq, max_mul]
239
239
exact max_le_max (hf x y) (hg x y)
240
240
241
241
protected theorem prod_mk_left (a : α) : LipschitzWith 1 (Prod.mk a : β → α × β) := by
@@ -250,8 +250,8 @@ protected theorem uncurry {f : α → β → γ} {Kα Kβ : ℝ≥0} (hα : ∀
250
250
simp only [Function.uncurry, ENNReal.coe_add, add_mul]
251
251
apply le_trans (edist_triangle _ (f a₂ b₁) _)
252
252
exact
253
- add_le_add (le_trans (hα _ _ _) <| ENNReal. mul_left_mono <| le_max_left _ _)
254
- (le_trans (hβ _ _ _) <| ENNReal. mul_left_mono <| le_max_right _ _)
253
+ add_le_add (le_trans (hα _ _ _) <| mul_left_mono <| le_max_left _ _)
254
+ (le_trans (hβ _ _ _) <| mul_left_mono <| le_max_right _ _)
255
255
256
256
/-- Iterates of a Lipschitz function are Lipschitz. -/
257
257
protected theorem iterate {f : α → α} (hf : LipschitzWith K f) : ∀ n, LipschitzWith (K ^ n) f^[n]
@@ -299,7 +299,7 @@ protected theorem continuousOn (hf : LipschitzOnWith K f s) : ContinuousOn f s :
299
299
theorem edist_le_mul_of_le (h : LipschitzOnWith K f s) {x y : α} (hx : x ∈ s) (hy : y ∈ s)
300
300
{r : ℝ≥0 ∞} (hr : edist x y ≤ r) :
301
301
edist (f x) (f y) ≤ K * r :=
302
- (h hx hy).trans <| ENNReal. mul_left_mono hr
302
+ (h hx hy).trans <| mul_left_mono hr
303
303
304
304
theorem edist_lt_of_edist_lt_div (hf : LipschitzOnWith K f s) {x y : α} (hx : x ∈ s) (hy : y ∈ s)
305
305
{d : ℝ≥0 ∞} (hd : edist x y < d / K) : edist (f x) (f y) < d :=
@@ -314,7 +314,7 @@ protected theorem comp {g : β → γ} {t : Set β} {Kg : ℝ≥0} (hg : Lipschi
314
314
protected theorem prod {g : α → γ} {Kf Kg : ℝ≥0 } (hf : LipschitzOnWith Kf f s)
315
315
(hg : LipschitzOnWith Kg g s) : LipschitzOnWith (max Kf Kg) (fun x => (f x, g x)) s := by
316
316
intro _ hx _ hy
317
- rw [ENNReal.coe_mono.map_max, Prod.edist_eq, ENNReal. max_mul]
317
+ rw [ENNReal.coe_mono.map_max, Prod.edist_eq, max_mul]
318
318
exact max_le_max (hf hx hy) (hg hx hy)
319
319
320
320
theorem ediam_image2_le (f : α → β → γ) {K₁ K₂ : ℝ≥0 } (s : Set α) (t : Set β)
@@ -325,8 +325,8 @@ theorem ediam_image2_le (f : α → β → γ) {K₁ K₂ : ℝ≥0} (s : Set α
325
325
refine (edist_triangle _ (f a₂ b₁) _).trans ?_
326
326
exact
327
327
add_le_add
328
- ((hf₁ b₁ hb₁ ha₁ ha₂).trans <| ENNReal. mul_left_mono <| EMetric.edist_le_diam_of_mem ha₁ ha₂)
329
- ((hf₂ a₂ ha₂ hb₁ hb₂).trans <| ENNReal. mul_left_mono <| EMetric.edist_le_diam_of_mem hb₁ hb₂)
328
+ ((hf₁ b₁ hb₁ ha₁ ha₂).trans <| mul_left_mono <| EMetric.edist_le_diam_of_mem ha₁ ha₂)
329
+ ((hf₂ a₂ ha₂ hb₁ hb₂).trans <| mul_left_mono <| EMetric.edist_le_diam_of_mem hb₁ hb₂)
330
330
331
331
end LipschitzOnWith
332
332
0 commit comments