Skip to content

Commit ebbc0fe

Browse files
committed
chore(HahnSeries): fix Fintype/Finite (#11531)
1 parent 51ab0bb commit ebbc0fe

File tree

1 file changed

+4
-4
lines changed

1 file changed

+4
-4
lines changed

Mathlib/RingTheory/HahnSeries/PowerSeries.lean

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -154,13 +154,13 @@ theorem ofPowerSeries_X_pow {R} [CommSemiring R] (n : ℕ) :
154154
#align hahn_series.of_power_series_X_pow HahnSeries.ofPowerSeries_X_pow
155155

156156
-- Lemmas about converting hahn_series over fintype to and from mv_power_series
157-
/-- The ring `HahnSeries (σ →₀ ℕ) R` is isomorphic to `MvPowerSeries σ R` for a `Fintype` `σ`.
157+
/-- The ring `HahnSeries (σ →₀ ℕ) R` is isomorphic to `MvPowerSeries σ R` for a `Finite` `σ`.
158158
We take the index set of the hahn series to be `Finsupp` rather than `pi`,
159-
even though we assume `Fintype σ` as this is more natural for alignment with `MvPowerSeries`.
159+
even though we assume `Finite σ` as this is more natural for alignment with `MvPowerSeries`.
160160
After importing `Algebra.Order.Pi` the ring `HahnSeries (σ → ℕ) R` could be constructed instead.
161161
-/
162162
@[simps]
163-
def toMvPowerSeries {σ : Type*} [Fintype σ] : HahnSeries (σ →₀ ℕ) R ≃+* MvPowerSeries σ R where
163+
def toMvPowerSeries {σ : Type*} [Finite σ] : HahnSeries (σ →₀ ℕ) R ≃+* MvPowerSeries σ R where
164164
toFun f := f.coeff
165165
invFun f := ⟨(f : (σ →₀ ℕ) → R), Finsupp.isPWO _⟩
166166
left_inv f := by
@@ -187,7 +187,7 @@ def toMvPowerSeries {σ : Type*} [Fintype σ] : HahnSeries (σ →₀ ℕ) R ≃
187187
rw [and_iff_right (left_ne_zero_of_mul h), and_iff_right (right_ne_zero_of_mul h)]
188188
#align hahn_series.to_mv_power_series HahnSeries.toMvPowerSeries
189189

190-
variable {σ : Type*} [Fintype σ]
190+
variable {σ : Type*} [Finite σ]
191191

192192
theorem coeff_toMvPowerSeries {f : HahnSeries (σ →₀ ℕ) R} {n : σ →₀ ℕ} :
193193
MvPowerSeries.coeff R n (toMvPowerSeries f) = f.coeff n :=

0 commit comments

Comments
 (0)