File tree Expand file tree Collapse file tree 1 file changed +4
-4
lines changed
Mathlib/RingTheory/HahnSeries Expand file tree Collapse file tree 1 file changed +4
-4
lines changed Original file line number Diff line number Diff line change @@ -154,13 +154,13 @@ theorem ofPowerSeries_X_pow {R} [CommSemiring R] (n : ℕ) :
154
154
#align hahn_series.of_power_series_X_pow HahnSeries.ofPowerSeries_X_pow
155
155
156
156
-- Lemmas about converting hahn_series over fintype to and from mv_power_series
157
- /-- The ring `HahnSeries (σ →₀ ℕ) R` is isomorphic to `MvPowerSeries σ R` for a `Fintype ` `σ`.
157
+ /-- The ring `HahnSeries (σ →₀ ℕ) R` is isomorphic to `MvPowerSeries σ R` for a `Finite ` `σ`.
158
158
We take the index set of the hahn series to be `Finsupp` rather than `pi`,
159
- even though we assume `Fintype σ` as this is more natural for alignment with `MvPowerSeries`.
159
+ even though we assume `Finite σ` as this is more natural for alignment with `MvPowerSeries`.
160
160
After importing `Algebra.Order.Pi` the ring `HahnSeries (σ → ℕ) R` could be constructed instead.
161
161
-/
162
162
@[simps]
163
- def toMvPowerSeries {σ : Type *} [Fintype σ] : HahnSeries (σ →₀ ℕ) R ≃+* MvPowerSeries σ R where
163
+ def toMvPowerSeries {σ : Type *} [Finite σ] : HahnSeries (σ →₀ ℕ) R ≃+* MvPowerSeries σ R where
164
164
toFun f := f.coeff
165
165
invFun f := ⟨(f : (σ →₀ ℕ) → R), Finsupp.isPWO _⟩
166
166
left_inv f := by
@@ -187,7 +187,7 @@ def toMvPowerSeries {σ : Type*} [Fintype σ] : HahnSeries (σ →₀ ℕ) R ≃
187
187
rw [and_iff_right (left_ne_zero_of_mul h), and_iff_right (right_ne_zero_of_mul h)]
188
188
#align hahn_series.to_mv_power_series HahnSeries.toMvPowerSeries
189
189
190
- variable {σ : Type *} [Fintype σ]
190
+ variable {σ : Type *} [Finite σ]
191
191
192
192
theorem coeff_toMvPowerSeries {f : HahnSeries (σ →₀ ℕ) R} {n : σ →₀ ℕ} :
193
193
MvPowerSeries.coeff R n (toMvPowerSeries f) = f.coeff n :=
You can’t perform that action at this time.
0 commit comments