|
| 1 | +/- |
| 2 | +Copyright (c) 2016 Jeremy Avigad. All rights reserved. |
| 3 | +Released under Apache 2.0 license as described in the file LICENSE. |
| 4 | +Authors: Jeremy Avigad, Leonardo de Moura, Mario Carneiro, Johannes Hölzl |
| 5 | +-/ |
| 6 | +import Mathlib.Algebra.Group.TypeTags |
| 7 | +import Mathlib.Algebra.Order.Monoid.Cancel.Defs |
| 8 | +import Mathlib.Algebra.Order.Monoid.Canonical.Defs |
| 9 | + |
| 10 | +/-! # Ordered monoid structures on `Multiplicative α` and `Additive α`. -/ |
| 11 | + |
| 12 | + |
| 13 | +instance : ∀ [LE α], LE (Multiplicative α) := |
| 14 | + fun {inst} => inst |
| 15 | + |
| 16 | +instance : ∀ [LE α], LE (Additive α) := |
| 17 | + fun {inst} => inst |
| 18 | + |
| 19 | +instance : ∀ [LT α], LT (Multiplicative α) := |
| 20 | + fun {inst} => inst |
| 21 | + |
| 22 | +instance : ∀ [LT α], LT (Additive α) := |
| 23 | + fun {inst} => inst |
| 24 | + |
| 25 | +instance Multiplicative.preorder : ∀ [Preorder α], Preorder (Multiplicative α) := |
| 26 | + fun {inst} => inst |
| 27 | + |
| 28 | +instance Additive.preorder : ∀ [Preorder α], Preorder (Additive α) := |
| 29 | + fun {inst} => inst |
| 30 | + |
| 31 | +instance Multiplicative.partialOrder : ∀ [PartialOrder α], PartialOrder (Multiplicative α) := |
| 32 | + fun {inst} => inst |
| 33 | + |
| 34 | +instance Additive.partialOrder : ∀ [PartialOrder α], PartialOrder (Additive α) := |
| 35 | + fun {inst} => inst |
| 36 | + |
| 37 | +instance Multiplicative.linearOrder : ∀ [LinearOrder α], LinearOrder (Multiplicative α) := |
| 38 | + fun {inst} => inst |
| 39 | + |
| 40 | +instance Additive.linearOrder : ∀ [LinearOrder α], LinearOrder (Additive α) := |
| 41 | + fun {inst} => inst |
| 42 | + |
| 43 | +instance Multiplicative.orderBot [LE α] : ∀ [OrderBot α], OrderBot (Multiplicative α) := |
| 44 | + fun {inst} => inst |
| 45 | + |
| 46 | +instance Additive.orderBot [LE α] : ∀ [OrderBot α], OrderBot (Additive α) := |
| 47 | + fun {inst} => inst |
| 48 | + |
| 49 | +instance Multiplicative.orderTop [LE α] : ∀ [OrderTop α], OrderTop (Multiplicative α) := |
| 50 | + fun {inst} => inst |
| 51 | + |
| 52 | +instance Additive.orderTop [LE α] : ∀ [OrderTop α], OrderTop (Additive α) := |
| 53 | + fun {inst} => inst |
| 54 | + |
| 55 | +instance Multiplicative.boundedOrder [LE α] : ∀ [BoundedOrder α], BoundedOrder (Multiplicative α) := |
| 56 | + fun {inst} => inst |
| 57 | + |
| 58 | +instance Additive.boundedOrder [LE α] : ∀ [BoundedOrder α], BoundedOrder (Additive α) := |
| 59 | + fun {inst} => inst |
| 60 | + |
| 61 | +instance Multiplicative.orderedCommMonoid [OrderedAddCommMonoid α] : |
| 62 | + OrderedCommMonoid (Multiplicative α) := |
| 63 | + { Multiplicative.partialOrder, Multiplicative.commMonoid with |
| 64 | + mul_le_mul_left := @OrderedAddCommMonoid.add_le_add_left α _ } |
| 65 | + |
| 66 | +instance Additive.orderedAddCommMonoid [OrderedCommMonoid α] : |
| 67 | + OrderedAddCommMonoid (Additive α) := |
| 68 | + { Additive.partialOrder, Additive.addCommMonoid with |
| 69 | + add_le_add_left := @OrderedCommMonoid.mul_le_mul_left α _ } |
| 70 | + |
| 71 | +instance Multiplicative.orderedCancelAddCommMonoid [OrderedCancelAddCommMonoid α] : |
| 72 | + OrderedCancelCommMonoid (Multiplicative α) := |
| 73 | + { Multiplicative.orderedCommMonoid with |
| 74 | + le_of_mul_le_mul_left := @OrderedCancelAddCommMonoid.le_of_add_le_add_left α _ } |
| 75 | + |
| 76 | +instance Additive.orderedCancelAddCommMonoid [OrderedCancelCommMonoid α] : |
| 77 | + OrderedCancelAddCommMonoid (Additive α) := |
| 78 | + { Additive.orderedAddCommMonoid with |
| 79 | + le_of_add_le_add_left := @OrderedCancelCommMonoid.le_of_mul_le_mul_left α _ } |
| 80 | + |
| 81 | +instance Multiplicative.linearOrderedCommMonoid [LinearOrderedAddCommMonoid α] : |
| 82 | + LinearOrderedCommMonoid (Multiplicative α) := |
| 83 | + { Multiplicative.linearOrder, Multiplicative.orderedCommMonoid with } |
| 84 | + |
| 85 | +instance Additive.linearOrderedAddCommMonoid [LinearOrderedCommMonoid α] : |
| 86 | + LinearOrderedAddCommMonoid (Additive α) := |
| 87 | + { Additive.linearOrder, Additive.orderedAddCommMonoid with } |
| 88 | + |
| 89 | +instance Multiplicative.existsMulOfLe [Add α] [LE α] [ExistsAddOfLE α] : |
| 90 | + ExistsMulOfLE (Multiplicative α) := |
| 91 | + ⟨@exists_add_of_le α _ _ _⟩ |
| 92 | + |
| 93 | +instance Additive.existsAddOfLe [Mul α] [LE α] [ExistsMulOfLE α] : ExistsAddOfLE (Additive α) := |
| 94 | + ⟨@exists_mul_of_le α _ _ _⟩ |
| 95 | + |
| 96 | +instance Multiplicative.canonicallyOrderedMonoid [CanonicallyOrderedAddMonoid α] : |
| 97 | + CanonicallyOrderedMonoid (Multiplicative α) := |
| 98 | + { Multiplicative.orderedCommMonoid, Multiplicative.orderBot, |
| 99 | + Multiplicative.existsMulOfLe with le_self_mul := @le_self_add α _ } |
| 100 | + |
| 101 | +instance Additive.canonicallyOrderedAddMonoid [CanonicallyOrderedMonoid α] : |
| 102 | + CanonicallyOrderedAddMonoid (Additive α) := |
| 103 | + { Additive.orderedAddCommMonoid, Additive.orderBot, Additive.existsAddOfLe with |
| 104 | + le_self_add := @le_self_mul α _ } |
| 105 | + |
| 106 | +instance Multiplicative.canonicallyLinearOrderedMonoid [CanonicallyLinearOrderedAddMonoid α] : |
| 107 | + CanonicallyLinearOrderedMonoid (Multiplicative α) := |
| 108 | + { Multiplicative.canonicallyOrderedMonoid, Multiplicative.linearOrder with } |
| 109 | + |
| 110 | +instance [CanonicallyLinearOrderedMonoid α] : CanonicallyLinearOrderedAddMonoid (Additive α) := |
| 111 | + { Additive.canonicallyOrderedAddMonoid, Additive.linearOrder with } |
| 112 | + |
| 113 | +namespace Additive |
| 114 | + |
| 115 | +variable [Preorder α] |
| 116 | + |
| 117 | +@[simp] |
| 118 | +theorem ofMul_le {a b : α} : ofMul a ≤ ofMul b ↔ a ≤ b := |
| 119 | + Iff.rfl |
| 120 | +#align additive.of_mul_le Additive.ofMul_le |
| 121 | + |
| 122 | +@[simp] |
| 123 | +theorem ofMul_lt {a b : α} : ofMul a < ofMul b ↔ a < b := |
| 124 | + Iff.rfl |
| 125 | +#align additive.of_mul_lt Additive.ofMul_lt |
| 126 | + |
| 127 | +@[simp] |
| 128 | +theorem toMul_le {a b : Additive α} : toMul a ≤ toMul b ↔ a ≤ b := |
| 129 | + Iff.rfl |
| 130 | +#align additive.to_mul_le Additive.toMul_le |
| 131 | + |
| 132 | +@[simp] |
| 133 | +theorem toMul_lt {a b : Additive α} : toMul a < toMul b ↔ a < b := |
| 134 | + Iff.rfl |
| 135 | +#align additive.to_mul_lt Additive.toMul_lt |
| 136 | + |
| 137 | +end Additive |
| 138 | + |
| 139 | +namespace Multiplicative |
| 140 | + |
| 141 | +variable [Preorder α] |
| 142 | + |
| 143 | +@[simp] |
| 144 | +theorem ofAdd_le {a b : α} : ofAdd a ≤ ofAdd b ↔ a ≤ b := |
| 145 | + Iff.rfl |
| 146 | +#align multiplicative.of_add_le Multiplicative.ofAdd_le |
| 147 | + |
| 148 | +@[simp] |
| 149 | +theorem ofAdd_lt {a b : α} : ofAdd a < ofAdd b ↔ a < b := |
| 150 | + Iff.rfl |
| 151 | +#align multiplicative.of_add_lt Multiplicative.ofAdd_lt |
| 152 | + |
| 153 | +@[simp] |
| 154 | +theorem toAdd_le {a b : Multiplicative α} : toAdd a ≤ toAdd b ↔ a ≤ b := |
| 155 | + Iff.rfl |
| 156 | +#align multiplicative.to_add_le Multiplicative.toAdd_le |
| 157 | + |
| 158 | +@[simp] |
| 159 | +theorem toAdd_lt {a b : Multiplicative α} : toAdd a < toAdd b ↔ a < b := |
| 160 | + Iff.rfl |
| 161 | +#align multiplicative.to_add_lt Multiplicative.toAdd_lt |
| 162 | + |
| 163 | +end Multiplicative |
0 commit comments