Skip to content

Commit ed9d559

Browse files
committed
chore(LinearAlgebra/CliffordAlgebra): remove Q := Q (#6780)
The removal of a FunLike instance for `Module.Dual` made these unnecessary.
1 parent 0d2b123 commit ed9d559

File tree

5 files changed

+16
-26
lines changed

5 files changed

+16
-26
lines changed

Mathlib/LinearAlgebra/CliffordAlgebra/Conjugation.lean

Lines changed: 8 additions & 13 deletions
Original file line numberDiff line numberDiff line change
@@ -89,27 +89,24 @@ def reverse : CliffordAlgebra Q →ₗ[R] CliffordAlgebra Q :=
8989
unop_injective <| by simp⟩).toLinearMap
9090
#align clifford_algebra.reverse CliffordAlgebra.reverse
9191

92-
-- porting note: can't infer `Q`
9392
@[simp]
94-
theorem reverse_ι (m : M) : reverse (Q := Q) (ι Q m) = ι Q m := by simp [reverse]
93+
theorem reverse_ι (m : M) : reverse (ι Q m) = ι Q m := by simp [reverse]
9594
#align clifford_algebra.reverse_ι CliffordAlgebra.reverse_ι
9695

9796
@[simp]
9897
theorem reverse.commutes (r : R) :
99-
-- porting note: can't infer `Q`
100-
reverse (Q := Q) (algebraMap R (CliffordAlgebra Q) r) = algebraMap R _ r := by simp [reverse]
98+
reverse (algebraMap R (CliffordAlgebra Q) r) = algebraMap R _ r := by simp [reverse]
10199
#align clifford_algebra.reverse.commutes CliffordAlgebra.reverse.commutes
102100

103-
-- porting note: can't infer `Q`
104101
@[simp]
105-
theorem reverse.map_one : reverse (Q := Q) (1 : CliffordAlgebra Q) = 1 := by
102+
theorem reverse.map_one : reverse (1 : CliffordAlgebra Q) = 1 := by
106103
convert reverse.commutes (Q := Q) (1 : R) <;> simp
107104
#align clifford_algebra.reverse.map_one CliffordAlgebra.reverse.map_one
108105

109106
@[simp]
110107
theorem reverse.map_mul (a b : CliffordAlgebra Q) :
111108
-- porting note: can't infer `Q`
112-
reverse (Q := Q) (a * b) = reverse (Q := Q) b * reverse (Q := Q) a := by
109+
reverse (a * b) = reverse b * reverse a := by
113110
simp [reverse]
114111
#align clifford_algebra.reverse.map_mul CliffordAlgebra.reverse.map_mul
115112

@@ -131,9 +128,8 @@ theorem reverse_involutive : Function.Involutive (reverse (Q := Q)) :=
131128
LinearMap.congr_fun reverse_comp_reverse
132129
#align clifford_algebra.reverse_involutive CliffordAlgebra.reverse_involutive
133130

134-
-- porting note: can't infer `Q`
135131
@[simp]
136-
theorem reverse_reverse : ∀ a : CliffordAlgebra Q, reverse (Q := Q) (reverse (Q := Q) a) = a :=
132+
theorem reverse_reverse : ∀ a : CliffordAlgebra Q, reverse (reverse a) = a :=
137133
reverse_involutive
138134
#align clifford_algebra.reverse_reverse CliffordAlgebra.reverse_reverse
139135

@@ -162,8 +158,7 @@ theorem reverse_involute_commute : Function.Commute (reverse (Q := Q)) involute
162158
#align clifford_algebra.reverse_involute_commute CliffordAlgebra.reverse_involute_commute
163159

164160
theorem reverse_involute :
165-
-- porting note: can't infer `Q`
166-
∀ a : CliffordAlgebra Q, reverse (Q := Q) (involute a) = involute (reverse (Q := Q) a) :=
161+
∀ a : CliffordAlgebra Q, reverse (involute a) = involute (reverse a) :=
167162
reverse_involute_commute
168163
#align clifford_algebra.reverse_involute CliffordAlgebra.reverse_involute
169164

@@ -180,7 +175,7 @@ section List
180175
taking the product of the reverse of that list. -/
181176
theorem reverse_prod_map_ι :
182177
-- porting note: can't infer `Q`
183-
∀ l : List M, reverse (Q := Q) (l.map <| ι Q).prod = (l.map <| ι Q).reverse.prod
178+
∀ l : List M, reverse (l.map <| ι Q).prod = (l.map <| ι Q).reverse.prod
184179
| [] => by simp
185180
| x::xs => by simp [reverse_prod_map_ι xs]
186181
#align clifford_algebra.reverse_prod_map_ι CliffordAlgebra.reverse_prod_map_ι
@@ -316,7 +311,7 @@ theorem involute_mem_evenOdd_iff {x : CliffordAlgebra Q} {n : ZMod 2} :
316311
@[simp]
317312
theorem reverse_mem_evenOdd_iff {x : CliffordAlgebra Q} {n : ZMod 2} :
318313
-- porting note: cannot infer `Q`
319-
reverse (Q := Q) x ∈ evenOdd Q n ↔ x ∈ evenOdd Q n :=
314+
reverse x ∈ evenOdd Q n ↔ x ∈ evenOdd Q n :=
320315
SetLike.ext_iff.mp (evenOdd_comap_reverse Q n) x
321316
#align clifford_algebra.reverse_mem_even_odd_iff CliffordAlgebra.reverse_mem_evenOdd_iff
322317

Mathlib/LinearAlgebra/CliffordAlgebra/Contraction.lean

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -114,8 +114,8 @@ def contractRight : CliffordAlgebra Q →ₗ[R] Module.Dual R M →ₗ[R] Cliffo
114114
#align clifford_algebra.contract_right CliffordAlgebra.contractRight
115115

116116
theorem contractRight_eq (x : CliffordAlgebra Q) :
117-
contractRight (Q := Q) x d = reverse (Q := Q)
118-
(contractLeft (R := R) (M := M) d <| reverse (Q := Q) x) :=
117+
contractRight (Q := Q) x d = reverse
118+
(contractLeft (R := R) (M := M) d <| reverse x) :=
119119
rfl
120120
#align clifford_algebra.contract_right_eq CliffordAlgebra.contractRight_eq
121121

Mathlib/LinearAlgebra/CliffordAlgebra/EvenEquiv.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -241,7 +241,7 @@ def equivEven : CliffordAlgebra Q ≃ₐ[R] CliffordAlgebra.even (Q' Q) :=
241241
/-- The representation of the clifford conjugate (i.e. the reverse of the involute) in the even
242242
subalgebra is just the reverse of the representation. -/
243243
theorem coe_toEven_reverse_involute (x : CliffordAlgebra Q) :
244-
↑(toEven Q (reverse (Q := Q) (involute x))) =
244+
↑(toEven Q (reverse (involute x))) =
245245
reverse (Q := Q' Q) (toEven Q x : CliffordAlgebra (Q' Q)) := by
246246
induction x using CliffordAlgebra.induction
247247
case h_grade0 r => simp only [AlgHom.commutes, Subalgebra.coe_algebraMap, reverse.commutes]

Mathlib/LinearAlgebra/CliffordAlgebra/Fold.lean

Lines changed: 2 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -99,15 +99,13 @@ def foldl (f : M →ₗ[R] N →ₗ[R] N) (hf : ∀ m x, f m (f m x) = Q m • x
9999

100100
@[simp]
101101
theorem foldl_reverse (f : M →ₗ[R] N →ₗ[R] N) (hf) (n : N) (x : CliffordAlgebra Q) :
102-
-- porting note: cannot infer `Q`
103-
foldl Q f hf n (reverse (Q := Q) x) = foldr Q f hf n x :=
102+
foldl Q f hf n (reverse x) = foldr Q f hf n x :=
104103
FunLike.congr_arg (foldr Q f hf n) <| reverse_reverse _
105104
#align clifford_algebra.foldl_reverse CliffordAlgebra.foldl_reverse
106105

107106
@[simp]
108107
theorem foldr_reverse (f : M →ₗ[R] N →ₗ[R] N) (hf) (n : N) (x : CliffordAlgebra Q) :
109-
-- porting note: cannot infer `Q`
110-
foldr Q f hf n (reverse (Q := Q) x) = foldl Q f hf n x :=
108+
foldr Q f hf n (reverse x) = foldl Q f hf n x :=
111109
rfl
112110
#align clifford_algebra.foldr_reverse CliffordAlgebra.foldr_reverse
113111

Mathlib/LinearAlgebra/CliffordAlgebra/Star.lean

Lines changed: 3 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -34,20 +34,17 @@ variable {Q : QuadraticForm R M}
3434
namespace CliffordAlgebra
3535

3636
instance instStarRing : StarRing (CliffordAlgebra Q) where
37-
-- porting note: cannot infer `Q`
38-
star x := reverse (Q := Q) (involute x)
37+
star x := reverse (involute x)
3938
star_involutive x := by
4039
simp only [reverse_involute_commute.eq, reverse_reverse, involute_involute]
4140
star_mul x y := by simp only [map_mul, reverse.map_mul]
4241
star_add x y := by simp only [map_add]
4342

44-
-- porting note: cannot infer `Q`
45-
theorem star_def (x : CliffordAlgebra Q) : star x = reverse (Q := Q) (involute x) :=
43+
theorem star_def (x : CliffordAlgebra Q) : star x = reverse (involute x) :=
4644
rfl
4745
#align clifford_algebra.star_def CliffordAlgebra.star_def
4846

49-
-- porting note: cannot infer `Q`
50-
theorem star_def' (x : CliffordAlgebra Q) : star x = involute (reverse (Q := Q) x) :=
47+
theorem star_def' (x : CliffordAlgebra Q) : star x = involute (reverse x) :=
5148
reverse_involute _
5249
#align clifford_algebra.star_def' CliffordAlgebra.star_def'
5350

0 commit comments

Comments
 (0)