@@ -89,27 +89,24 @@ def reverse : CliffordAlgebra Q →ₗ[R] CliffordAlgebra Q :=
89
89
unop_injective <| by simp⟩).toLinearMap
90
90
#align clifford_algebra.reverse CliffordAlgebra.reverse
91
91
92
- -- porting note: can't infer `Q`
93
92
@[simp]
94
- theorem reverse_ι (m : M) : reverse (Q := Q) ( ι Q m) = ι Q m := by simp [reverse]
93
+ theorem reverse_ι (m : M) : reverse (ι Q m) = ι Q m := by simp [reverse]
95
94
#align clifford_algebra.reverse_ι CliffordAlgebra.reverse_ι
96
95
97
96
@[simp]
98
97
theorem reverse.commutes (r : R) :
99
- -- porting note: can't infer `Q`
100
- reverse (Q := Q) (algebraMap R (CliffordAlgebra Q) r) = algebraMap R _ r := by simp [reverse]
98
+ reverse (algebraMap R (CliffordAlgebra Q) r) = algebraMap R _ r := by simp [reverse]
101
99
#align clifford_algebra.reverse.commutes CliffordAlgebra.reverse.commutes
102
100
103
- -- porting note: can't infer `Q`
104
101
@[simp]
105
- theorem reverse.map_one : reverse (Q := Q) ( 1 : CliffordAlgebra Q) = 1 := by
102
+ theorem reverse.map_one : reverse (1 : CliffordAlgebra Q) = 1 := by
106
103
convert reverse.commutes (Q := Q) (1 : R) <;> simp
107
104
#align clifford_algebra.reverse.map_one CliffordAlgebra.reverse.map_one
108
105
109
106
@[simp]
110
107
theorem reverse.map_mul (a b : CliffordAlgebra Q) :
111
108
-- porting note: can't infer `Q`
112
- reverse (Q := Q) ( a * b) = reverse (Q := Q) b * reverse (Q := Q) a := by
109
+ reverse (a * b) = reverse b * reverse a := by
113
110
simp [reverse]
114
111
#align clifford_algebra.reverse.map_mul CliffordAlgebra.reverse.map_mul
115
112
@@ -131,9 +128,8 @@ theorem reverse_involutive : Function.Involutive (reverse (Q := Q)) :=
131
128
LinearMap.congr_fun reverse_comp_reverse
132
129
#align clifford_algebra.reverse_involutive CliffordAlgebra.reverse_involutive
133
130
134
- -- porting note: can't infer `Q`
135
131
@[simp]
136
- theorem reverse_reverse : ∀ a : CliffordAlgebra Q, reverse (Q := Q) ( reverse (Q := Q) a) = a :=
132
+ theorem reverse_reverse : ∀ a : CliffordAlgebra Q, reverse (reverse a) = a :=
137
133
reverse_involutive
138
134
#align clifford_algebra.reverse_reverse CliffordAlgebra.reverse_reverse
139
135
@@ -162,8 +158,7 @@ theorem reverse_involute_commute : Function.Commute (reverse (Q := Q)) involute
162
158
#align clifford_algebra.reverse_involute_commute CliffordAlgebra.reverse_involute_commute
163
159
164
160
theorem reverse_involute :
165
- -- porting note: can't infer `Q`
166
- ∀ a : CliffordAlgebra Q, reverse (Q := Q) (involute a) = involute (reverse (Q := Q) a) :=
161
+ ∀ a : CliffordAlgebra Q, reverse (involute a) = involute (reverse a) :=
167
162
reverse_involute_commute
168
163
#align clifford_algebra.reverse_involute CliffordAlgebra.reverse_involute
169
164
@@ -180,7 +175,7 @@ section List
180
175
taking the product of the reverse of that list. -/
181
176
theorem reverse_prod_map_ι :
182
177
-- porting note: can't infer `Q`
183
- ∀ l : List M, reverse (Q := Q) ( l.map <| ι Q).prod = (l.map <| ι Q).reverse.prod
178
+ ∀ l : List M, reverse (l.map <| ι Q).prod = (l.map <| ι Q).reverse.prod
184
179
| [] => by simp
185
180
| x::xs => by simp [reverse_prod_map_ι xs]
186
181
#align clifford_algebra.reverse_prod_map_ι CliffordAlgebra.reverse_prod_map_ι
@@ -316,7 +311,7 @@ theorem involute_mem_evenOdd_iff {x : CliffordAlgebra Q} {n : ZMod 2} :
316
311
@[simp]
317
312
theorem reverse_mem_evenOdd_iff {x : CliffordAlgebra Q} {n : ZMod 2 } :
318
313
-- porting note: cannot infer `Q`
319
- reverse (Q := Q) x ∈ evenOdd Q n ↔ x ∈ evenOdd Q n :=
314
+ reverse x ∈ evenOdd Q n ↔ x ∈ evenOdd Q n :=
320
315
SetLike.ext_iff.mp (evenOdd_comap_reverse Q n) x
321
316
#align clifford_algebra.reverse_mem_even_odd_iff CliffordAlgebra.reverse_mem_evenOdd_iff
322
317
0 commit comments