@@ -324,6 +324,29 @@ theorem IsSuccPrelimit.lt_iff_exists_lt (h : IsSuccPrelimit b) : a < b ↔ ∃ c
324
324
theorem IsSuccLimit.lt_iff_exists_lt (h : IsSuccLimit b) : a < b ↔ ∃ c < b, a < c :=
325
325
h.isSuccPrelimit.lt_iff_exists_lt
326
326
327
+ lemma _root_.IsLUB.isSuccPrelimit_of_not_mem {s : Set α} (hs : IsLUB s a) (ha : a ∉ s) :
328
+ IsSuccPrelimit a := by
329
+ intro b hb
330
+ obtain ⟨c, hc, hbc, hca⟩ := hs.exists_between hb.lt
331
+ obtain rfl := (hb.ge_of_gt hbc).antisymm hca
332
+ contradiction
333
+
334
+ lemma _root_.IsLUB.mem_of_not_isSuccPrelimit {s : Set α} (hs : IsLUB s a) (ha : ¬IsSuccPrelimit a) :
335
+ a ∈ s :=
336
+ ha.imp_symm hs.isSuccPrelimit_of_not_mem
337
+
338
+ lemma _root_.IsLUB.isSuccLimit_of_not_mem {s : Set α} (hs : IsLUB s a) (hs' : s.Nonempty)
339
+ (ha : a ∉ s) : IsSuccLimit a := by
340
+ refine ⟨?_, hs.isSuccPrelimit_of_not_mem ha⟩
341
+ obtain ⟨b, hb⟩ := hs'
342
+ obtain rfl | hb := (hs.1 hb).eq_or_lt
343
+ · contradiction
344
+ · exact hb.not_isMin
345
+
346
+ lemma _root_.IsLUB.mem_of_not_isSuccLimit {s : Set α} (hs : IsLUB s a) (hs' : s.Nonempty)
347
+ (ha : ¬IsSuccLimit a) : a ∈ s :=
348
+ ha.imp_symm <| hs.isSuccLimit_of_not_mem hs'
349
+
327
350
theorem IsSuccPrelimit.isLUB_Iio (ha : IsSuccPrelimit a) : IsLUB (Iio a) a := by
328
351
refine ⟨fun _ ↦ le_of_lt, fun b hb ↦ le_of_forall_lt fun c hc ↦ ?_⟩
329
352
obtain ⟨d, hd, hd'⟩ := ha.lt_iff_exists_lt.1 hc
@@ -634,6 +657,22 @@ theorem IsPredPrelimit.lt_iff_exists_lt (h : IsPredPrelimit b) : b < a ↔ ∃ c
634
657
theorem IsPredLimit.lt_iff_exists_lt (h : IsPredLimit b) : b < a ↔ ∃ c, b < c ∧ c < a :=
635
658
h.dual.lt_iff_exists_lt
636
659
660
+ lemma _root_.IsGLB.isPredPrelimit_of_not_mem {s : Set α} (hs : IsGLB s a) (ha : a ∉ s) :
661
+ IsPredPrelimit a := by
662
+ simpa using (IsGLB.dual hs).isSuccPrelimit_of_not_mem ha
663
+
664
+ lemma _root_.IsGLB.mem_of_not_isPredPrelimit {s : Set α} (hs : IsGLB s a) (ha : ¬IsPredPrelimit a) :
665
+ a ∈ s :=
666
+ ha.imp_symm hs.isPredPrelimit_of_not_mem
667
+
668
+ lemma _root_.IsGLB.isPredLimit_of_not_mem {s : Set α} (hs : IsGLB s a) (hs' : s.Nonempty)
669
+ (ha : a ∉ s) : IsPredLimit a := by
670
+ simpa using (IsGLB.dual hs).isSuccLimit_of_not_mem hs' ha
671
+
672
+ lemma _root_.IsGLB.mem_of_not_isPredLimit {s : Set α} (hs : IsGLB s a) (hs' : s.Nonempty)
673
+ (ha : ¬IsPredLimit a) : a ∈ s :=
674
+ ha.imp_symm <| hs.isPredLimit_of_not_mem hs'
675
+
637
676
theorem IsPredPrelimit.isGLB_Ioi (ha : IsPredPrelimit a) : IsGLB (Ioi a) a :=
638
677
ha.dual.isLUB_Iio
639
678
0 commit comments