@@ -85,16 +85,16 @@ nonrec theorem convolution_tendsto_right {ι} {φ : ι → ContDiffBump (0 : G)}
85
85
(hig : ∀ᶠ i in l, AEStronglyMeasurable (g i) μ) (hcg : Tendsto (uncurry g) (l ×ˢ 𝓝 x₀) (𝓝 z₀))
86
86
(hk : Tendsto k l (𝓝 x₀)) :
87
87
Tendsto (fun i => ((φ i).normed μ ⋆[lsmul ℝ ℝ, μ] g i) (k i)) l (𝓝 z₀) :=
88
- convolution_tendsto_right (eventually_of_forall fun i => (φ i).nonneg_normed)
89
- (eventually_of_forall fun i => (φ i).integral_normed) (tendsto_support_normed_smallSets hφ) hig
88
+ convolution_tendsto_right (Eventually.of_forall fun i => (φ i).nonneg_normed)
89
+ (Eventually.of_forall fun i => (φ i).integral_normed) (tendsto_support_normed_smallSets hφ) hig
90
90
hcg hk
91
91
92
92
/-- Special case of `ContDiffBump.convolution_tendsto_right` where `g` is continuous,
93
93
and the limit is taken only in the first function. -/
94
94
theorem convolution_tendsto_right_of_continuous {ι} {φ : ι → ContDiffBump (0 : G)} {l : Filter ι}
95
95
(hφ : Tendsto (fun i => (φ i).rOut) l (𝓝 0 )) (hg : Continuous g) (x₀ : G) :
96
96
Tendsto (fun i => ((φ i).normed μ ⋆[lsmul ℝ ℝ, μ] g) x₀) l (𝓝 (g x₀)) :=
97
- convolution_tendsto_right hφ (eventually_of_forall fun _ => hg.aestronglyMeasurable)
97
+ convolution_tendsto_right hφ (Eventually.of_forall fun _ => hg.aestronglyMeasurable)
98
98
((hg.tendsto x₀).comp tendsto_snd) tendsto_const_nhds
99
99
100
100
/-- If a function `g` is locally integrable, then the convolution `φ i * g` converges almost
@@ -112,7 +112,7 @@ theorem ae_convolution_tendsto_right_of_locallyIntegrable
112
112
filter_upwards [(Besicovitch.vitaliFamily μ).ae_tendsto_average_norm_sub hg] with x₀ h₀
113
113
simp only [convolution_eq_swap, lsmul_apply]
114
114
have hφ' : Tendsto (fun i ↦ (φ i).rOut) l (𝓝[>] 0 ) :=
115
- tendsto_nhdsWithin_iff.2 ⟨hφ, eventually_of_forall (fun i ↦ (φ i).rOut_pos)⟩
115
+ tendsto_nhdsWithin_iff.2 ⟨hφ, Eventually.of_forall (fun i ↦ (φ i).rOut_pos)⟩
116
116
have := (h₀.comp (Besicovitch.tendsto_filterAt μ x₀)).comp hφ'
117
117
simp only [Function.comp] at this
118
118
apply tendsto_integral_smul_of_tendsto_average_norm_sub (K ^ (FiniteDimensional.finrank ℝ G)) this
0 commit comments