@@ -922,20 +922,6 @@ theorem SeminormedCommGroup.mem_closure_iff :
922
922
a ∈ closure s ↔ ∀ ε, 0 < ε → ∃ b ∈ s, ‖a / b‖ < ε := by
923
923
simp [Metric.mem_closure_iff, dist_eq_norm_div]
924
924
925
- @[to_additive norm_le_zero_iff']
926
- theorem norm_le_zero_iff''' [T0Space E] {a : E} : ‖a‖ ≤ 0 ↔ a = 1 := by
927
- letI : NormedGroup E :=
928
- { ‹SeminormedGroup E› with toMetricSpace := MetricSpace.ofT0PseudoMetricSpace E }
929
- rw [← dist_one_right, dist_le_zero]
930
-
931
- @[to_additive norm_eq_zero']
932
- theorem norm_eq_zero''' [T0Space E] {a : E} : ‖a‖ = 0 ↔ a = 1 :=
933
- (norm_nonneg' a).le_iff_eq.symm.trans norm_le_zero_iff'''
934
-
935
- @[to_additive norm_pos_iff']
936
- theorem norm_pos_iff''' [T0Space E] {a : E} : 0 < ‖a‖ ↔ a ≠ 1 := by
937
- rw [← not_le, norm_le_zero_iff''']
938
-
939
925
@[to_additive]
940
926
theorem SeminormedGroup.tendstoUniformlyOn_one {f : ι → κ → G} {s : Set κ} {l : Filter ι} :
941
927
TendstoUniformlyOn f 1 l s ↔ ∀ ε > 0 , ∀ᶠ i in l, ∀ x ∈ s, ‖f i x‖ < ε := by
@@ -1292,24 +1278,26 @@ section NormedGroup
1292
1278
1293
1279
variable [NormedGroup E] {a b : E}
1294
1280
1281
+ @[to_additive (attr := simp) norm_le_zero_iff]
1282
+ lemma norm_le_zero_iff' : ‖a‖ ≤ 0 ↔ a = 1 := by rw [← dist_one_right, dist_le_zero]
1283
+
1284
+ @[to_additive (attr := simp) norm_pos_iff]
1285
+ lemma norm_pos_iff' : 0 < ‖a‖ ↔ a ≠ 1 := by rw [← not_le, norm_le_zero_iff']
1286
+
1295
1287
@[to_additive (attr := simp) norm_eq_zero]
1296
- theorem norm_eq_zero'' : ‖a‖ = 0 ↔ a = 1 :=
1297
- norm_eq_zero'''
1288
+ lemma norm_eq_zero' : ‖a‖ = 0 ↔ a = 1 := (norm_nonneg' a).le_iff_eq.symm.trans norm_le_zero_iff'
1298
1289
1299
1290
@[to_additive norm_ne_zero_iff]
1300
- theorem norm_ne_zero_iff' : ‖a‖ ≠ 0 ↔ a ≠ 1 :=
1301
- norm_eq_zero''.not
1291
+ lemma norm_ne_zero_iff' : ‖a‖ ≠ 0 ↔ a ≠ 1 := norm_eq_zero'.not
1302
1292
1303
- @[to_additive (attr := simp) norm_pos_iff]
1304
- theorem norm_pos_iff'' : 0 < ‖a‖ ↔ a ≠ 1 :=
1305
- norm_pos_iff'''
1306
-
1307
- @[to_additive (attr := simp) norm_le_zero_iff]
1308
- theorem norm_le_zero_iff'' : ‖a‖ ≤ 0 ↔ a = 1 :=
1309
- norm_le_zero_iff'''
1293
+ @[deprecated (since := "2024-11-24")] alias norm_le_zero_iff'' := norm_le_zero_iff'
1294
+ @[deprecated (since := "2024-11-24")] alias norm_le_zero_iff''' := norm_le_zero_iff'
1295
+ @[deprecated (since := "2024-11-24")] alias norm_pos_iff'' := norm_pos_iff'
1296
+ @[deprecated (since := "2024-11-24")] alias norm_eq_zero'' := norm_eq_zero'
1297
+ @[deprecated (since := "2024-11-24")] alias norm_eq_zero''' := norm_eq_zero'
1310
1298
1311
1299
@[to_additive]
1312
- theorem norm_div_eq_zero_iff : ‖a / b‖ = 0 ↔ a = b := by rw [norm_eq_zero'' , div_eq_one]
1300
+ theorem norm_div_eq_zero_iff : ‖a / b‖ = 0 ↔ a = b := by rw [norm_eq_zero', div_eq_one]
1313
1301
1314
1302
@[to_additive]
1315
1303
theorem norm_div_pos_iff : 0 < ‖a / b‖ ↔ a ≠ b := by
@@ -1318,7 +1306,7 @@ theorem norm_div_pos_iff : 0 < ‖a / b‖ ↔ a ≠ b := by
1318
1306
1319
1307
@[to_additive eq_of_norm_sub_le_zero]
1320
1308
theorem eq_of_norm_div_le_zero (h : ‖a / b‖ ≤ 0 ) : a = b := by
1321
- rwa [← div_eq_one, ← norm_le_zero_iff'' ]
1309
+ rwa [← div_eq_one, ← norm_le_zero_iff']
1322
1310
1323
1311
alias ⟨eq_of_norm_div_eq_zero, _⟩ := norm_div_eq_zero_iff
1324
1312
@@ -1334,7 +1322,7 @@ theorem eq_one_or_nnnorm_pos (a : E) : a = 1 ∨ 0 < ‖a‖₊ :=
1334
1322
1335
1323
@[to_additive (attr := simp) nnnorm_eq_zero]
1336
1324
theorem nnnorm_eq_zero' : ‖a‖₊ = 0 ↔ a = 1 := by
1337
- rw [← NNReal.coe_eq_zero, coe_nnnorm', norm_eq_zero'' ]
1325
+ rw [← NNReal.coe_eq_zero, coe_nnnorm', norm_eq_zero']
1338
1326
1339
1327
@[to_additive nnnorm_ne_zero_iff]
1340
1328
theorem nnnorm_ne_zero_iff' : ‖a‖₊ ≠ 0 ↔ a ≠ 1 :=
@@ -1346,24 +1334,24 @@ lemma nnnorm_pos' : 0 < ‖a‖₊ ↔ a ≠ 1 := pos_iff_ne_zero.trans nnnorm_n
1346
1334
/-- See `tendsto_norm_one` for a version with full neighborhoods. -/
1347
1335
@[to_additive "See `tendsto_norm_zero` for a version with full neighborhoods."]
1348
1336
lemma tendsto_norm_one' : Tendsto (norm : E → ℝ) (𝓝[≠] 1 ) (𝓝[>] 0 ) :=
1349
- tendsto_norm_one.inf <| tendsto_principal_principal.2 fun _ hx ↦ norm_pos_iff'' .2 hx
1337
+ tendsto_norm_one.inf <| tendsto_principal_principal.2 fun _ hx ↦ norm_pos_iff'.2 hx
1350
1338
1351
1339
@[to_additive]
1352
1340
theorem tendsto_norm_div_self_punctured_nhds (a : E) :
1353
1341
Tendsto (fun x => ‖x / a‖) (𝓝[≠] a) (𝓝[>] 0 ) :=
1354
1342
(tendsto_norm_div_self a).inf <|
1355
- tendsto_principal_principal.2 fun _x hx => norm_pos_iff'' .2 <| div_ne_one.2 hx
1343
+ tendsto_principal_principal.2 fun _x hx => norm_pos_iff'.2 <| div_ne_one.2 hx
1356
1344
1357
1345
@[to_additive]
1358
1346
theorem tendsto_norm_nhdsWithin_one : Tendsto (norm : E → ℝ) (𝓝[≠] 1 ) (𝓝[>] 0 ) :=
1359
- tendsto_norm_one.inf <| tendsto_principal_principal.2 fun _x => norm_pos_iff'' .2
1347
+ tendsto_norm_one.inf <| tendsto_principal_principal.2 fun _x => norm_pos_iff'.2
1360
1348
1361
1349
variable (E)
1362
1350
1363
1351
/-- The norm of a normed group as a group norm. -/
1364
1352
@[to_additive "The norm of a normed group as an additive group norm."]
1365
1353
def normGroupNorm : GroupNorm E :=
1366
- { normGroupSeminorm _ with eq_one_of_map_eq_zero' := fun _ => norm_eq_zero'' .1 }
1354
+ { normGroupSeminorm _ with eq_one_of_map_eq_zero' := fun _ => norm_eq_zero'.1 }
1367
1355
1368
1356
@[simp]
1369
1357
theorem coe_normGroupNorm : ⇑(normGroupNorm E) = norm :=
0 commit comments