Skip to content

Commit f2336c4

Browse files
committed
chore: delete lemmas about T0 seminormed groups (#19438)
Those duplicate lemmas about normed groups
1 parent ebd6407 commit f2336c4

File tree

8 files changed

+31
-40
lines changed

8 files changed

+31
-40
lines changed

Mathlib/Analysis/Distribution/SchwartzSpace.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1172,7 +1172,7 @@ instance instZeroAtInftyContinuousMapClass : ZeroAtInftyContinuousMapClass 𝓢(
11721172
intro x hx
11731173
rw [div_lt_iff₀ hε] at hx
11741174
have hxpos : 0 < ‖x‖ := by
1175-
rw [norm_pos_iff']
1175+
rw [norm_pos_iff]
11761176
intro hxzero
11771177
simp only [hxzero, norm_zero, zero_mul, ← not_le] at hx
11781178
exact hx (apply_nonneg (SchwartzMap.seminorm ℝ 1 0) f)

Mathlib/Analysis/InnerProductSpace/Positive.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -109,7 +109,7 @@ lemma antilipschitz_of_forall_le_inner_map {H : Type*} [NormedAddCommGroup H]
109109
simp_rw [sq, mul_assoc] at h
110110
by_cases hx0 : x = 0
111111
· simp [hx0]
112-
· apply (map_le_map_iff <| OrderIso.mulLeft₀ ‖x‖ (norm_pos_iff'.mpr hx0)).mp
112+
· apply (map_le_map_iff <| OrderIso.mulLeft₀ ‖x‖ (norm_pos_iff.mpr hx0)).mp
113113
exact (h x).trans <| (norm_inner_le_norm _ _).trans <| (mul_comm _ _).le
114114

115115
lemma isUnit_of_forall_le_norm_inner_map (f : E →L[𝕜] E) {c : ℝ≥0} (hc : 0 < c)

Mathlib/Analysis/Normed/Affine/ContinuousAffineMap.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -175,7 +175,7 @@ noncomputable instance : NormedAddCommGroup (V →ᴬ[𝕜] W) :=
175175
simp only [norm_eq_zero, coe_const, Function.const_apply] at h₁
176176
rw [h₁]
177177
rfl
178-
· rw [norm_eq_zero', contLinear_eq_zero_iff_exists_const] at h₁
178+
· rw [norm_eq_zero, contLinear_eq_zero_iff_exists_const] at h₁
179179
obtain ⟨q, rfl⟩ := h₁
180180
simp only [norm_le_zero_iff, coe_const, Function.const_apply] at h₂
181181
rw [h₂]

Mathlib/Analysis/Normed/Group/Basic.lean

Lines changed: 20 additions & 32 deletions
Original file line numberDiff line numberDiff line change
@@ -922,20 +922,6 @@ theorem SeminormedCommGroup.mem_closure_iff :
922922
a ∈ closure s ↔ ∀ ε, 0 < ε → ∃ b ∈ s, ‖a / b‖ < ε := by
923923
simp [Metric.mem_closure_iff, dist_eq_norm_div]
924924

925-
@[to_additive norm_le_zero_iff']
926-
theorem norm_le_zero_iff''' [T0Space E] {a : E} : ‖a‖ ≤ 0 ↔ a = 1 := by
927-
letI : NormedGroup E :=
928-
{ ‹SeminormedGroup E› with toMetricSpace := MetricSpace.ofT0PseudoMetricSpace E }
929-
rw [← dist_one_right, dist_le_zero]
930-
931-
@[to_additive norm_eq_zero']
932-
theorem norm_eq_zero''' [T0Space E] {a : E} : ‖a‖ = 0 ↔ a = 1 :=
933-
(norm_nonneg' a).le_iff_eq.symm.trans norm_le_zero_iff'''
934-
935-
@[to_additive norm_pos_iff']
936-
theorem norm_pos_iff''' [T0Space E] {a : E} : 0 < ‖a‖ ↔ a ≠ 1 := by
937-
rw [← not_le, norm_le_zero_iff''']
938-
939925
@[to_additive]
940926
theorem SeminormedGroup.tendstoUniformlyOn_one {f : ι → κ → G} {s : Set κ} {l : Filter ι} :
941927
TendstoUniformlyOn f 1 l s ↔ ∀ ε > 0, ∀ᶠ i in l, ∀ x ∈ s, ‖f i x‖ < ε := by
@@ -1292,24 +1278,26 @@ section NormedGroup
12921278

12931279
variable [NormedGroup E] {a b : E}
12941280

1281+
@[to_additive (attr := simp) norm_le_zero_iff]
1282+
lemma norm_le_zero_iff' : ‖a‖ ≤ 0 ↔ a = 1 := by rw [← dist_one_right, dist_le_zero]
1283+
1284+
@[to_additive (attr := simp) norm_pos_iff]
1285+
lemma norm_pos_iff' : 0 < ‖a‖ ↔ a ≠ 1 := by rw [← not_le, norm_le_zero_iff']
1286+
12951287
@[to_additive (attr := simp) norm_eq_zero]
1296-
theorem norm_eq_zero'' : ‖a‖ = 0 ↔ a = 1 :=
1297-
norm_eq_zero'''
1288+
lemma norm_eq_zero' : ‖a‖ = 0 ↔ a = 1 := (norm_nonneg' a).le_iff_eq.symm.trans norm_le_zero_iff'
12981289

12991290
@[to_additive norm_ne_zero_iff]
1300-
theorem norm_ne_zero_iff' : ‖a‖ ≠ 0 ↔ a ≠ 1 :=
1301-
norm_eq_zero''.not
1291+
lemma norm_ne_zero_iff' : ‖a‖ ≠ 0 ↔ a ≠ 1 := norm_eq_zero'.not
13021292

1303-
@[to_additive (attr := simp) norm_pos_iff]
1304-
theorem norm_pos_iff'' : 0 < ‖a‖ ↔ a ≠ 1 :=
1305-
norm_pos_iff'''
1306-
1307-
@[to_additive (attr := simp) norm_le_zero_iff]
1308-
theorem norm_le_zero_iff'' : ‖a‖ ≤ 0 ↔ a = 1 :=
1309-
norm_le_zero_iff'''
1293+
@[deprecated (since := "2024-11-24")] alias norm_le_zero_iff'' := norm_le_zero_iff'
1294+
@[deprecated (since := "2024-11-24")] alias norm_le_zero_iff''' := norm_le_zero_iff'
1295+
@[deprecated (since := "2024-11-24")] alias norm_pos_iff'' := norm_pos_iff'
1296+
@[deprecated (since := "2024-11-24")] alias norm_eq_zero'' := norm_eq_zero'
1297+
@[deprecated (since := "2024-11-24")] alias norm_eq_zero''' := norm_eq_zero'
13101298

13111299
@[to_additive]
1312-
theorem norm_div_eq_zero_iff : ‖a / b‖ = 0 ↔ a = b := by rw [norm_eq_zero'', div_eq_one]
1300+
theorem norm_div_eq_zero_iff : ‖a / b‖ = 0 ↔ a = b := by rw [norm_eq_zero', div_eq_one]
13131301

13141302
@[to_additive]
13151303
theorem norm_div_pos_iff : 0 < ‖a / b‖ ↔ a ≠ b := by
@@ -1318,7 +1306,7 @@ theorem norm_div_pos_iff : 0 < ‖a / b‖ ↔ a ≠ b := by
13181306

13191307
@[to_additive eq_of_norm_sub_le_zero]
13201308
theorem eq_of_norm_div_le_zero (h : ‖a / b‖ ≤ 0) : a = b := by
1321-
rwa [← div_eq_one, ← norm_le_zero_iff'']
1309+
rwa [← div_eq_one, ← norm_le_zero_iff']
13221310

13231311
alias ⟨eq_of_norm_div_eq_zero, _⟩ := norm_div_eq_zero_iff
13241312

@@ -1334,7 +1322,7 @@ theorem eq_one_or_nnnorm_pos (a : E) : a = 1 ∨ 0 < ‖a‖₊ :=
13341322

13351323
@[to_additive (attr := simp) nnnorm_eq_zero]
13361324
theorem nnnorm_eq_zero' : ‖a‖₊ = 0 ↔ a = 1 := by
1337-
rw [← NNReal.coe_eq_zero, coe_nnnorm', norm_eq_zero'']
1325+
rw [← NNReal.coe_eq_zero, coe_nnnorm', norm_eq_zero']
13381326

13391327
@[to_additive nnnorm_ne_zero_iff]
13401328
theorem nnnorm_ne_zero_iff' : ‖a‖₊ ≠ 0 ↔ a ≠ 1 :=
@@ -1346,24 +1334,24 @@ lemma nnnorm_pos' : 0 < ‖a‖₊ ↔ a ≠ 1 := pos_iff_ne_zero.trans nnnorm_n
13461334
/-- See `tendsto_norm_one` for a version with full neighborhoods. -/
13471335
@[to_additive "See `tendsto_norm_zero` for a version with full neighborhoods."]
13481336
lemma tendsto_norm_one' : Tendsto (norm : E → ℝ) (𝓝[≠] 1) (𝓝[>] 0) :=
1349-
tendsto_norm_one.inf <| tendsto_principal_principal.2 fun _ hx ↦ norm_pos_iff''.2 hx
1337+
tendsto_norm_one.inf <| tendsto_principal_principal.2 fun _ hx ↦ norm_pos_iff'.2 hx
13501338

13511339
@[to_additive]
13521340
theorem tendsto_norm_div_self_punctured_nhds (a : E) :
13531341
Tendsto (fun x => ‖x / a‖) (𝓝[≠] a) (𝓝[>] 0) :=
13541342
(tendsto_norm_div_self a).inf <|
1355-
tendsto_principal_principal.2 fun _x hx => norm_pos_iff''.2 <| div_ne_one.2 hx
1343+
tendsto_principal_principal.2 fun _x hx => norm_pos_iff'.2 <| div_ne_one.2 hx
13561344

13571345
@[to_additive]
13581346
theorem tendsto_norm_nhdsWithin_one : Tendsto (norm : E → ℝ) (𝓝[≠] 1) (𝓝[>] 0) :=
1359-
tendsto_norm_one.inf <| tendsto_principal_principal.2 fun _x => norm_pos_iff''.2
1347+
tendsto_norm_one.inf <| tendsto_principal_principal.2 fun _x => norm_pos_iff'.2
13601348

13611349
variable (E)
13621350

13631351
/-- The norm of a normed group as a group norm. -/
13641352
@[to_additive "The norm of a normed group as an additive group norm."]
13651353
def normGroupNorm : GroupNorm E :=
1366-
{ normGroupSeminorm _ with eq_one_of_map_eq_zero' := fun _ => norm_eq_zero''.1 }
1354+
{ normGroupSeminorm _ with eq_one_of_map_eq_zero' := fun _ => norm_eq_zero'.1 }
13671355

13681356
@[simp]
13691357
theorem coe_normGroupNorm : ⇑(normGroupNorm E) = norm :=

Mathlib/Analysis/Normed/Group/Uniform.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -381,7 +381,7 @@ instance : NormedCommGroup (SeparationQuotient E) where
381381

382382
@[to_additive]
383383
theorem mk_eq_one_iff {p : E} : mk p = 1 ↔ ‖p‖ = 0 := by
384-
rw [← norm_mk', norm_eq_zero'']
384+
rw [← norm_mk', norm_eq_zero']
385385

386386
set_option linter.docPrime false in
387387
@[to_additive (attr := simp) nnnorm_mk]

Mathlib/MeasureTheory/Integral/IntegrableOn.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -489,7 +489,7 @@ lemma IntegrableAtFilter.eq_zero_of_tendsto
489489
(h : IntegrableAtFilter f l μ) (h' : ∀ s ∈ l, μ s = ∞) {a : E}
490490
(hf : Tendsto f l (𝓝 a)) : a = 0 := by
491491
by_contra H
492-
obtain ⟨ε, εpos, hε⟩ : ∃ (ε : ℝ), 0 < ε ∧ ε < ‖a‖ := exists_between (norm_pos_iff'.mpr H)
492+
obtain ⟨ε, εpos, hε⟩ : ∃ (ε : ℝ), 0 < ε ∧ ε < ‖a‖ := exists_between (norm_pos_iff.mpr H)
493493
rcases h with ⟨u, ul, hu⟩
494494
let v := u ∩ {b | ε < ‖f b‖}
495495
have hv : IntegrableOn f v μ := hu.mono_set inter_subset_left

Mathlib/NumberTheory/NumberField/CanonicalEmbedding/Basic.lean

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -367,8 +367,8 @@ theorem forall_normAtPlace_eq_zero_iff {x : mixedSpace K} :
367367
(∀ w, normAtPlace w x = 0) ↔ x = 0 := by
368368
refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩
369369
· ext w
370-
· exact norm_eq_zero'.mp (normAtPlace_apply_isReal w.prop _ ▸ h w.1)
371-
· exact norm_eq_zero'.mp (normAtPlace_apply_isComplex w.prop _ ▸ h w.1)
370+
· exact norm_eq_zero.mp (normAtPlace_apply_isReal w.prop _ ▸ h w.1)
371+
· exact norm_eq_zero.mp (normAtPlace_apply_isComplex w.prop _ ▸ h w.1)
372372
· simp_rw [h, map_zero, implies_true]
373373

374374
@[deprecated (since := "2024-09-13")] alias normAtPlace_eq_zero := forall_normAtPlace_eq_zero_iff

scripts/nolints_prime_decls.txt

Lines changed: 4 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -3455,21 +3455,24 @@ NormedSpace.isVonNBounded_iff'
34553455
NormedSpace.norm_expSeries_summable'
34563456
NormedSpace.norm_expSeries_summable_of_mem_ball'
34573457
norm_eq_of_mem_sphere'
3458+
norm_eq_zero'
34583459
norm_eq_zero''
34593460
norm_eq_zero'''
34603461
norm_inv'
34613462
norm_le_norm_add_const_of_dist_le'
34623463
norm_le_norm_add_norm_div'
34633464
norm_le_of_mem_closedBall'
34643465
norm_le_pi_norm'
3466+
norm_le_zero_iff'
34653467
norm_le_zero_iff''
34663468
norm_le_zero_iff'''
34673469
norm_lt_of_mem_ball'
34683470
norm_ne_zero_iff'
34693471
norm_nonneg'
34703472
norm_of_subsingleton'
34713473
norm_one'
3472-
norm_pos_iff''
3474+
norm_pos_iff'
3475+
norm_pos_iff'
34733476
norm_pos_iff'''
34743477
norm_sub_norm_le'
34753478
norm_toNNReal'

0 commit comments

Comments
 (0)