|
| 1 | +/- |
| 2 | +Copyright (c) 2022 Jujian Zhang. All rights reserved. |
| 3 | +Released under Apache 2.0 license as described in the file LICENSE. |
| 4 | +Authors: Jujian Zhang, Scott Morrison |
| 5 | +
|
| 6 | +! This file was ported from Lean 3 source module category_theory.abelian.injective_resolution |
| 7 | +! leanprover-community/mathlib commit f0c8bf9245297a541f468be517f1bde6195105e9 |
| 8 | +! Please do not edit these lines, except to modify the commit id |
| 9 | +! if you have ported upstream changes. |
| 10 | +-/ |
| 11 | +import Mathlib.Algebra.Homology.QuasiIso |
| 12 | +import Mathlib.CategoryTheory.Preadditive.InjectiveResolution |
| 13 | +import Mathlib.Algebra.Homology.HomotopyCategory |
| 14 | + |
| 15 | +/-! |
| 16 | +# Main result |
| 17 | +
|
| 18 | +When the underlying category is abelian: |
| 19 | +* `CategoryTheory.InjectiveResolution.desc`: Given `I : InjectiveResolution X` and |
| 20 | + `J : InjectiveResolution Y`, any morphism `X ⟶ Y` admits a descent to a chain map |
| 21 | + `J.cocomplex ⟶ I.cocomplex`. It is a descent in the sense that `I.ι` intertwines the descent and |
| 22 | + the original morphism, see `CategoryTheory.InjectiveResolution.desc_commutes`. |
| 23 | +* `CategoryTheory.InjectiveResolution.descHomotopy`: Any two such descents are homotopic. |
| 24 | +* `CategoryTheory.InjectiveResolution.homotopyEquiv`: Any two injective resolutions of the same |
| 25 | + object are homotopy equivalent. |
| 26 | +* `CategoryTheory.injectiveResolutions`: If every object admits an injective resolution, we can |
| 27 | + construct a functor `injectiveResolutions C : C ⥤ HomotopyCategory C`. |
| 28 | +
|
| 29 | +* `CategoryTheory.exact_f_d`: `f` and `Injective.d f` are exact. |
| 30 | +* `CategoryTheory.InjectiveResolution.of`: Hence, starting from a monomorphism `X ⟶ J`, where `J` |
| 31 | + is injective, we can apply `Injective.d` repeatedly to obtain an injective resolution of `X`. |
| 32 | +-/ |
| 33 | + |
| 34 | + |
| 35 | +noncomputable section |
| 36 | + |
| 37 | +open CategoryTheory |
| 38 | + |
| 39 | +open CategoryTheory.Limits |
| 40 | + |
| 41 | +universe v u |
| 42 | + |
| 43 | +namespace CategoryTheory |
| 44 | + |
| 45 | +variable {C : Type u} [Category.{v} C] |
| 46 | + |
| 47 | +open Injective |
| 48 | + |
| 49 | +namespace InjectiveResolution |
| 50 | +set_option linter.uppercaseLean3 false -- `InjectiveResolution` |
| 51 | + |
| 52 | +section |
| 53 | + |
| 54 | +variable [HasZeroMorphisms C] [HasZeroObject C] [HasEqualizers C] [HasImages C] |
| 55 | + |
| 56 | +/-- Auxiliary construction for `desc`. -/ |
| 57 | +def descFZero {Y Z : C} (f : Z ⟶ Y) (I : InjectiveResolution Y) (J : InjectiveResolution Z) : |
| 58 | + J.cocomplex.X 0 ⟶ I.cocomplex.X 0 := |
| 59 | + factorThru (f ≫ I.ι.f 0) (J.ι.f 0) |
| 60 | +#align category_theory.InjectiveResolution.desc_f_zero CategoryTheory.InjectiveResolution.descFZero |
| 61 | + |
| 62 | +end |
| 63 | + |
| 64 | +section Abelian |
| 65 | + |
| 66 | +variable [Abelian C] |
| 67 | + |
| 68 | +/-- Auxiliary construction for `desc`. -/ |
| 69 | +def descFOne {Y Z : C} (f : Z ⟶ Y) (I : InjectiveResolution Y) (J : InjectiveResolution Z) : |
| 70 | + J.cocomplex.X 1 ⟶ I.cocomplex.X 1 := |
| 71 | + Exact.desc (descFZero f I J ≫ I.cocomplex.d 0 1) (J.ι.f 0) (J.cocomplex.d 0 1) |
| 72 | + (Abelian.Exact.op _ _ J.exact₀) (by simp [← Category.assoc, descFZero]) |
| 73 | +#align category_theory.InjectiveResolution.desc_f_one CategoryTheory.InjectiveResolution.descFOne |
| 74 | + |
| 75 | +@[simp] |
| 76 | +theorem descFOne_zero_comm {Y Z : C} (f : Z ⟶ Y) (I : InjectiveResolution Y) |
| 77 | + (J : InjectiveResolution Z) : |
| 78 | + J.cocomplex.d 0 1 ≫ descFOne f I J = descFZero f I J ≫ I.cocomplex.d 0 1 := by |
| 79 | + simp [descFZero, descFOne] |
| 80 | +#align category_theory.InjectiveResolution.desc_f_one_zero_comm CategoryTheory.InjectiveResolution.descFOne_zero_comm |
| 81 | + |
| 82 | +/-- Auxiliary construction for `desc`. -/ |
| 83 | +def descFSucc {Y Z : C} (I : InjectiveResolution Y) (J : InjectiveResolution Z) (n : ℕ) |
| 84 | + (g : J.cocomplex.X n ⟶ I.cocomplex.X n) (g' : J.cocomplex.X (n + 1) ⟶ I.cocomplex.X (n + 1)) |
| 85 | + (w : J.cocomplex.d n (n + 1) ≫ g' = g ≫ I.cocomplex.d n (n + 1)) : |
| 86 | + Σ'g'' : J.cocomplex.X (n + 2) ⟶ I.cocomplex.X (n + 2), |
| 87 | + J.cocomplex.d (n + 1) (n + 2) ≫ g'' = g' ≫ I.cocomplex.d (n + 1) (n + 2) := |
| 88 | + ⟨@Exact.desc C _ _ _ _ _ _ _ _ _ (g' ≫ I.cocomplex.d (n + 1) (n + 2)) (J.cocomplex.d n (n + 1)) |
| 89 | + (J.cocomplex.d (n + 1) (n + 2)) (Abelian.Exact.op _ _ (J.exact _)) |
| 90 | + (by simp [← Category.assoc, w]), |
| 91 | + by simp⟩ |
| 92 | +#align category_theory.InjectiveResolution.desc_f_succ CategoryTheory.InjectiveResolution.descFSucc |
| 93 | + |
| 94 | +/-- A morphism in `C` descends to a chain map between injective resolutions. -/ |
| 95 | +def desc {Y Z : C} (f : Z ⟶ Y) (I : InjectiveResolution Y) (J : InjectiveResolution Z) : |
| 96 | + J.cocomplex ⟶ I.cocomplex := |
| 97 | + CochainComplex.mkHom _ _ (descFZero f _ _) (descFOne f _ _) (descFOne_zero_comm f I J).symm |
| 98 | + fun n ⟨g, g', w⟩ => ⟨(descFSucc I J n g g' w.symm).1, (descFSucc I J n g g' w.symm).2.symm⟩ |
| 99 | +#align category_theory.InjectiveResolution.desc CategoryTheory.InjectiveResolution.desc |
| 100 | + |
| 101 | +/-- The resolution maps intertwine the descent of a morphism and that morphism. -/ |
| 102 | +@[reassoc (attr := simp)] -- Porting note: Originally `@[simp, reassoc.1]` |
| 103 | +theorem desc_commutes {Y Z : C} (f : Z ⟶ Y) (I : InjectiveResolution Y) |
| 104 | + (J : InjectiveResolution Z) : J.ι ≫ desc f I J = (CochainComplex.single₀ C).map f ≫ I.ι := by |
| 105 | + ext n |
| 106 | + rcases n with (_ | _ | n) <;> |
| 107 | + · dsimp [desc, descFOne, descFZero] |
| 108 | + simp |
| 109 | +#align category_theory.InjectiveResolution.desc_commutes CategoryTheory.InjectiveResolution.desc_commutes |
| 110 | + |
| 111 | +-- Now that we've checked this property of the descent, we can seal away the actual definition. |
| 112 | +/-- An auxiliary definition for `descHomotopyZero`. -/ |
| 113 | +def descHomotopyZeroZero {Y Z : C} {I : InjectiveResolution Y} {J : InjectiveResolution Z} |
| 114 | + (f : I.cocomplex ⟶ J.cocomplex) (comm : I.ι ≫ f = 0) : I.cocomplex.X 1 ⟶ J.cocomplex.X 0 := |
| 115 | + Exact.desc (f.f 0) (I.ι.f 0) (I.cocomplex.d 0 1) (Abelian.Exact.op _ _ I.exact₀) |
| 116 | + (congr_fun (congr_arg HomologicalComplex.Hom.f comm) 0) |
| 117 | +#align category_theory.InjectiveResolution.desc_homotopy_zero_zero CategoryTheory.InjectiveResolution.descHomotopyZeroZero |
| 118 | + |
| 119 | +/-- An auxiliary definition for `descHomotopyZero`. -/ |
| 120 | +def descHomotopyZeroOne {Y Z : C} {I : InjectiveResolution Y} {J : InjectiveResolution Z} |
| 121 | + (f : I.cocomplex ⟶ J.cocomplex) (comm : I.ι ≫ f = (0 : _ ⟶ J.cocomplex)) : |
| 122 | + I.cocomplex.X 2 ⟶ J.cocomplex.X 1 := |
| 123 | + Exact.desc (f.f 1 - descHomotopyZeroZero f comm ≫ J.cocomplex.d 0 1) (I.cocomplex.d 0 1) |
| 124 | + (I.cocomplex.d 1 2) (Abelian.Exact.op _ _ (I.exact _)) |
| 125 | + (by simp [descHomotopyZeroZero, ← Category.assoc]) |
| 126 | +#align category_theory.InjectiveResolution.desc_homotopy_zero_one CategoryTheory.InjectiveResolution.descHomotopyZeroOne |
| 127 | + |
| 128 | +/-- An auxiliary definition for `descHomotopyZero`. -/ |
| 129 | +def descHomotopyZeroSucc {Y Z : C} {I : InjectiveResolution Y} {J : InjectiveResolution Z} |
| 130 | + (f : I.cocomplex ⟶ J.cocomplex) (n : ℕ) (g : I.cocomplex.X (n + 1) ⟶ J.cocomplex.X n) |
| 131 | + (g' : I.cocomplex.X (n + 2) ⟶ J.cocomplex.X (n + 1)) |
| 132 | + (w : f.f (n + 1) = I.cocomplex.d (n + 1) (n + 2) ≫ g' + g ≫ J.cocomplex.d n (n + 1)) : |
| 133 | + I.cocomplex.X (n + 3) ⟶ J.cocomplex.X (n + 2) := |
| 134 | + Exact.desc (f.f (n + 2) - g' ≫ J.cocomplex.d _ _) (I.cocomplex.d (n + 1) (n + 2)) |
| 135 | + (I.cocomplex.d (n + 2) (n + 3)) (Abelian.Exact.op _ _ (I.exact _)) |
| 136 | + (by |
| 137 | + simp [Preadditive.comp_sub, ← Category.assoc, Preadditive.sub_comp, |
| 138 | + show I.cocomplex.d (n + 1) (n + 2) ≫ g' = f.f (n + 1) - g ≫ J.cocomplex.d n (n + 1) by |
| 139 | + rw [w] |
| 140 | + simp only [add_sub_cancel]]) |
| 141 | +#align category_theory.InjectiveResolution.desc_homotopy_zero_succ CategoryTheory.InjectiveResolution.descHomotopyZeroSucc |
| 142 | + |
| 143 | +/-- Any descent of the zero morphism is homotopic to zero. -/ |
| 144 | +def descHomotopyZero {Y Z : C} {I : InjectiveResolution Y} {J : InjectiveResolution Z} |
| 145 | + (f : I.cocomplex ⟶ J.cocomplex) (comm : I.ι ≫ f = 0) : Homotopy f 0 := |
| 146 | + Homotopy.mkCoinductive _ (descHomotopyZeroZero f comm) (by simp [descHomotopyZeroZero]) |
| 147 | + (descHomotopyZeroOne f comm) (by simp [descHomotopyZeroOne]) fun n ⟨g, g', w⟩ => |
| 148 | + ⟨descHomotopyZeroSucc f n g g' (by simp only [w, add_comm]), by simp [descHomotopyZeroSucc, w]⟩ |
| 149 | +#align category_theory.InjectiveResolution.desc_homotopy_zero CategoryTheory.InjectiveResolution.descHomotopyZero |
| 150 | + |
| 151 | +/-- Two descents of the same morphism are homotopic. -/ |
| 152 | +def descHomotopy {Y Z : C} (f : Y ⟶ Z) {I : InjectiveResolution Y} {J : InjectiveResolution Z} |
| 153 | + (g h : I.cocomplex ⟶ J.cocomplex) (g_comm : I.ι ≫ g = (CochainComplex.single₀ C).map f ≫ J.ι) |
| 154 | + (h_comm : I.ι ≫ h = (CochainComplex.single₀ C).map f ≫ J.ι) : Homotopy g h := |
| 155 | + Homotopy.equivSubZero.invFun (descHomotopyZero _ (by simp [g_comm, h_comm])) |
| 156 | +#align category_theory.InjectiveResolution.desc_homotopy CategoryTheory.InjectiveResolution.descHomotopy |
| 157 | + |
| 158 | +/-- The descent of the identity morphism is homotopic to the identity cochain map. -/ |
| 159 | +def descIdHomotopy (X : C) (I : InjectiveResolution X) : |
| 160 | + Homotopy (desc (𝟙 X) I I) (𝟙 I.cocomplex) := by |
| 161 | + apply descHomotopy (𝟙 X) <;> simp |
| 162 | +#align category_theory.InjectiveResolution.desc_id_homotopy CategoryTheory.InjectiveResolution.descIdHomotopy |
| 163 | + |
| 164 | +/-- The descent of a composition is homotopic to the composition of the descents. -/ |
| 165 | +def descCompHomotopy {X Y Z : C} (f : X ⟶ Y) (g : Y ⟶ Z) (I : InjectiveResolution X) |
| 166 | + (J : InjectiveResolution Y) (K : InjectiveResolution Z) : |
| 167 | + Homotopy (desc (f ≫ g) K I) (desc f J I ≫ desc g K J) := by |
| 168 | + apply descHomotopy (f ≫ g) <;> simp |
| 169 | +#align category_theory.InjectiveResolution.desc_comp_homotopy CategoryTheory.InjectiveResolution.descCompHomotopy |
| 170 | + |
| 171 | +-- We don't care about the actual definitions of these homotopies. |
| 172 | +/-- Any two injective resolutions are homotopy equivalent. -/ |
| 173 | +def homotopyEquiv {X : C} (I J : InjectiveResolution X) : |
| 174 | + HomotopyEquiv I.cocomplex J.cocomplex where |
| 175 | + hom := desc (𝟙 X) J I |
| 176 | + inv := desc (𝟙 X) I J |
| 177 | + homotopyHomInvId := (descCompHomotopy (𝟙 X) (𝟙 X) I J I).symm.trans <| by |
| 178 | + simpa [Category.id_comp] using descIdHomotopy _ _ |
| 179 | + homotopyInvHomId := (descCompHomotopy (𝟙 X) (𝟙 X) J I J).symm.trans <| by |
| 180 | + simpa [Category.id_comp] using descIdHomotopy _ _ |
| 181 | +#align category_theory.InjectiveResolution.homotopy_equiv CategoryTheory.InjectiveResolution.homotopyEquiv |
| 182 | + |
| 183 | +@[reassoc (attr := simp)] -- Porting note: Originally `@[simp, reassoc.1]` |
| 184 | +theorem homotopyEquiv_hom_ι {X : C} (I J : InjectiveResolution X) : |
| 185 | + I.ι ≫ (homotopyEquiv I J).hom = J.ι := by simp [homotopyEquiv] |
| 186 | +#align category_theory.InjectiveResolution.homotopy_equiv_hom_ι CategoryTheory.InjectiveResolution.homotopyEquiv_hom_ι |
| 187 | + |
| 188 | +@[reassoc (attr := simp)] -- Porting note: Originally `@[simp, reassoc.1]` |
| 189 | +theorem homotopyEquiv_inv_ι {X : C} (I J : InjectiveResolution X) : |
| 190 | + J.ι ≫ (homotopyEquiv I J).inv = I.ι := by simp [homotopyEquiv] |
| 191 | +#align category_theory.InjectiveResolution.homotopy_equiv_inv_ι CategoryTheory.InjectiveResolution.homotopyEquiv_inv_ι |
| 192 | + |
| 193 | +end Abelian |
| 194 | + |
| 195 | +end InjectiveResolution |
| 196 | + |
| 197 | +section |
| 198 | + |
| 199 | +variable [Abelian C] |
| 200 | + |
| 201 | +/-- An arbitrarily chosen injective resolution of an object. -/ |
| 202 | +abbrev injectiveResolution (Z : C) [HasInjectiveResolution Z] : CochainComplex C ℕ := |
| 203 | + (HasInjectiveResolution.out (Z := Z)).some.cocomplex |
| 204 | +#align category_theory.injective_resolution CategoryTheory.injectiveResolution |
| 205 | + |
| 206 | +/-- The cochain map from cochain complex consisting of `Z` supported in degree `0` |
| 207 | +back to the arbitrarily chosen injective resolution `injectiveResolution Z`. -/ |
| 208 | +abbrev injectiveResolution.ι (Z : C) [HasInjectiveResolution Z] : |
| 209 | + (CochainComplex.single₀ C).obj Z ⟶ injectiveResolution Z := |
| 210 | + (HasInjectiveResolution.out (Z := Z)).some.ι |
| 211 | +#align category_theory.injective_resolution.ι CategoryTheory.injectiveResolution.ι |
| 212 | + |
| 213 | +/-- The descent of a morphism to a cochain map between the arbitrarily chosen injective resolutions. |
| 214 | +-/ |
| 215 | +abbrev injectiveResolution.desc {X Y : C} (f : X ⟶ Y) [HasInjectiveResolution X] |
| 216 | + [HasInjectiveResolution Y] : injectiveResolution X ⟶ injectiveResolution Y := |
| 217 | + InjectiveResolution.desc f _ _ |
| 218 | +#align category_theory.injective_resolution.desc CategoryTheory.injectiveResolution.desc |
| 219 | + |
| 220 | +variable (C) |
| 221 | +variable [HasInjectiveResolutions C] |
| 222 | + |
| 223 | +/-- Taking injective resolutions is functorial, |
| 224 | +if considered with target the homotopy category |
| 225 | +(`ℕ`-indexed cochain complexes and chain maps up to homotopy). |
| 226 | +-/ |
| 227 | +def injectiveResolutions : C ⥤ HomotopyCategory C (ComplexShape.up ℕ) where |
| 228 | + obj X := (HomotopyCategory.quotient _ _).obj (injectiveResolution X) |
| 229 | + map f := (HomotopyCategory.quotient _ _).map (injectiveResolution.desc f) |
| 230 | + map_id X := by |
| 231 | + rw [← (HomotopyCategory.quotient _ _).map_id] |
| 232 | + apply HomotopyCategory.eq_of_homotopy |
| 233 | + apply InjectiveResolution.descIdHomotopy |
| 234 | + map_comp f g := by |
| 235 | + rw [← (HomotopyCategory.quotient _ _).map_comp] |
| 236 | + apply HomotopyCategory.eq_of_homotopy |
| 237 | + apply InjectiveResolution.descCompHomotopy |
| 238 | +#align category_theory.injective_resolutions CategoryTheory.injectiveResolutions |
| 239 | + |
| 240 | +end |
| 241 | + |
| 242 | +section |
| 243 | + |
| 244 | +variable [Abelian C] [EnoughInjectives C] |
| 245 | + |
| 246 | +theorem exact_f_d {X Y : C} (f : X ⟶ Y) : Exact f (d f) := |
| 247 | + (Abelian.exact_iff _ _).2 <| |
| 248 | + ⟨by simp, zero_of_comp_mono (ι _) <| by rw [Category.assoc, kernel.condition]⟩ |
| 249 | +#align category_theory.exact_f_d CategoryTheory.exact_f_d |
| 250 | + |
| 251 | +end |
| 252 | + |
| 253 | +namespace InjectiveResolution |
| 254 | + |
| 255 | +/-! |
| 256 | +Our goal is to define `InjectiveResolution.of Z : InjectiveResolution Z`. |
| 257 | +The `0`-th object in this resolution will just be `Injective.under Z`, |
| 258 | +i.e. an arbitrarily chosen injective object with a map from `Z`. |
| 259 | +After that, we build the `n+1`-st object as `Injective.syzygies` |
| 260 | +applied to the previously constructed morphism, |
| 261 | +and the map from the `n`-th object as `Injective.d`. |
| 262 | +-/ |
| 263 | + |
| 264 | + |
| 265 | +variable [Abelian C] [EnoughInjectives C] |
| 266 | + |
| 267 | +/-- Auxiliary definition for `InjectiveResolution.of`. -/ |
| 268 | +@[simps!] |
| 269 | +def ofCocomplex (Z : C) : CochainComplex C ℕ := |
| 270 | + CochainComplex.mk' (Injective.under Z) (Injective.syzygies (Injective.ι Z)) |
| 271 | + (Injective.d (Injective.ι Z)) fun ⟨_, _, f⟩ => |
| 272 | + ⟨Injective.syzygies f, Injective.d f, (exact_f_d f).w⟩ |
| 273 | +set_option linter.uppercaseLean3 false in |
| 274 | +#align category_theory.InjectiveResolution.of_cocomplex CategoryTheory.InjectiveResolution.ofCocomplex |
| 275 | + |
| 276 | +-- Porting note: the ι field in `of` was very, very slow. To assist, |
| 277 | +-- implicit arguments were filled in and this particular proof was broken |
| 278 | +-- out into a separate result |
| 279 | +theorem ofCocomplex_sq_01_comm (Z : C) : |
| 280 | + Injective.ι Z ≫ HomologicalComplex.d (ofCocomplex Z) 0 1 = |
| 281 | + HomologicalComplex.d ((CochainComplex.single₀ C).obj Z) 0 1 ≫ 0 := by |
| 282 | + simp only [ofCocomplex_d, eq_self_iff_true, eqToHom_refl, Category.comp_id, |
| 283 | + dite_eq_ite, if_true, comp_zero] |
| 284 | + exact (exact_f_d (Injective.ι Z)).w |
| 285 | + |
| 286 | +-- Porting note: the `exact` in `of` was very, very slow. To assist, |
| 287 | +-- the whole proof was broken out into a separate result |
| 288 | +theorem exact_ofCocomplex (Z : C) (n : ℕ) : |
| 289 | + Exact (HomologicalComplex.d (ofCocomplex Z) n (n + 1)) |
| 290 | + (HomologicalComplex.d (ofCocomplex Z) (n + 1) (n + 2)) := |
| 291 | + match n with |
| 292 | +-- Porting note: used to be simp; apply exact_f_d on both branches |
| 293 | + | 0 => by simp; apply exact_f_d |
| 294 | + | m+1 => by |
| 295 | + simp only [ofCocomplex_X, ComplexShape.up_Rel, not_true, ofCocomplex_d, |
| 296 | + eqToHom_refl, Category.comp_id, dite_eq_ite, ite_true] |
| 297 | + erw [if_pos (c := m + 1 + 1 + 1 = m + 2 + 1) rfl] |
| 298 | + apply exact_f_d |
| 299 | + |
| 300 | +-- Porting note: still very slow but with `ofCocomplex_sq_01_comm` and |
| 301 | +-- `exact_ofCocomplex` as separate results it is more reasonable |
| 302 | +/-- In any abelian category with enough injectives, |
| 303 | +`InjectiveResolution.of Z` constructs an injective resolution of the object `Z`. |
| 304 | +-/ |
| 305 | +irreducible_def of (Z : C) : InjectiveResolution Z := |
| 306 | + { cocomplex := ofCocomplex Z |
| 307 | + ι := |
| 308 | + CochainComplex.mkHom |
| 309 | + ((CochainComplex.single₀ C).obj Z) (ofCocomplex Z) (Injective.ι Z) 0 |
| 310 | + (ofCocomplex_sq_01_comm Z) fun n _ => by |
| 311 | + -- Porting note: used to be ⟨0, by ext⟩ |
| 312 | + use 0 |
| 313 | + apply HasZeroObject.from_zero_ext |
| 314 | + injective := by rintro (_ | _ | _ | n) <;> · apply Injective.injective_under |
| 315 | + exact₀ := by simpa using exact_f_d (Injective.ι Z) |
| 316 | + exact := exact_ofCocomplex Z |
| 317 | + mono := Injective.ι_mono Z } |
| 318 | +set_option linter.uppercaseLean3 false in |
| 319 | +#align category_theory.InjectiveResolution.of CategoryTheory.InjectiveResolution.of |
| 320 | + |
| 321 | + |
| 322 | +instance (priority := 100) (Z : C) : HasInjectiveResolution Z where out := ⟨of Z⟩ |
| 323 | + |
| 324 | +instance (priority := 100) : HasInjectiveResolutions C where out _ := inferInstance |
| 325 | + |
| 326 | +end InjectiveResolution |
| 327 | + |
| 328 | +end CategoryTheory |
| 329 | + |
| 330 | +namespace HomologicalComplex.Hom |
| 331 | + |
| 332 | +variable {C : Type u} [Category.{v} C] [Abelian C] |
| 333 | + |
| 334 | +/-- If `X` is a cochain complex of injective objects and we have a quasi-isomorphism |
| 335 | +`f : Y[0] ⟶ X`, then `X` is an injective resolution of `Y`. -/ |
| 336 | +def HomologicalComplex.Hom.fromSingle₀InjectiveResolution (X : CochainComplex C ℕ) (Y : C) |
| 337 | + (f : (CochainComplex.single₀ C).obj Y ⟶ X) [QuasiIso f] (H : ∀ n, Injective (X.X n)) : |
| 338 | + InjectiveResolution Y where |
| 339 | + cocomplex := X |
| 340 | + ι := f |
| 341 | + injective := H |
| 342 | + exact₀ := from_single₀_exact_f_d_at_zero f |
| 343 | + exact := from_single₀_exact_at_succ f |
| 344 | + mono := from_single₀_mono_at_zero f |
| 345 | +set_option linter.uppercaseLean3 false in |
| 346 | +#align homological_complex.hom.homological_complex.hom.from_single₀_InjectiveResolution HomologicalComplex.Hom.HomologicalComplex.Hom.fromSingle₀InjectiveResolution |
| 347 | + |
| 348 | +end HomologicalComplex.Hom |
0 commit comments