Skip to content

Commit f472efc

Browse files
committed
chore: bump to nightly-2022-03-01 (#216)
1 parent de721d3 commit f472efc

File tree

10 files changed

+24
-53
lines changed

10 files changed

+24
-53
lines changed

Mathlib/Data/List/Basic.lean

Lines changed: 12 additions & 12 deletions
Original file line numberDiff line numberDiff line change
@@ -529,14 +529,14 @@ theorem map_eq_append_split {f : α → β} {l : List α} {s₁ s₂ : List β}
529529

530530
/-! ### repeat -/
531531

532-
theorem repeat_succ (a : α) n : repeat a (n+1) = a :: repeat a n := rfl
532+
theorem repeat'_succ (a : α) n : repeat' a (n+1) = a :: repeat' a n := rfl
533533

534-
theorem mem_repeat {a b : α} : ∀ {n}, b ∈ repeat a n ↔ n ≠ 0 ∧ b = a
534+
theorem mem_repeat' {a b : α} : ∀ {n}, b ∈ repeat' a n ↔ n ≠ 0 ∧ b = a
535535
| 0 => by simp
536-
| n+1 => by simp [mem_repeat]
536+
| n+1 => by simp [mem_repeat']
537537

538-
theorem eq_of_mem_repeat {a b : α} {n} (h : b ∈ repeat a n) : b = a :=
539-
(mem_repeat.1 h).2
538+
theorem eq_of_mem_repeat' {a b : α} {n} (h : b ∈ repeat' a n) : b = a :=
539+
(mem_repeat'.1 h).2
540540

541541
/-! ### getLast -/
542542

@@ -671,12 +671,12 @@ theorem get_append_right_aux {l₁ l₂ : List α} {n : ℕ}
671671
rw [length_append] at h₂
672672
exact Nat.sub_lt_left_of_lt_add h₁ h₂
673673

674-
theorem get_append_right {l₁ l₂ : List α} {n : ℕ} (h₁ : l₁.length ≤ n) (h₂) :
674+
theorem get_append_right' {l₁ l₂ : List α} {n : ℕ} (h₁ : l₁.length ≤ n) (h₂) :
675675
(l₁ ++ l₂).get ⟨n, h₂⟩ = l₂.get ⟨n - l₁.length, id <| get_append_right_aux h₁ h₂⟩ :=
676676
Option.some.inj $ by rw [← get?_eq_get, ← get?_eq_get, get?_append_right h₁]
677677

678-
@[simp] theorem get_repeat (a : α) {n : ℕ} (m : Fin _) : (List.repeat a n).get m = a :=
679-
eq_of_mem_repeat (get_mem _ _ _)
678+
@[simp] theorem get_repeat' (a : α) {n : ℕ} (m : Fin _) : (List.repeat' a n).get m = a :=
679+
eq_of_mem_repeat' (get_mem _ _ _)
680680

681681
theorem get?_append {l₁ l₂ : List α} {n : ℕ} (hn : n < l₁.length) :
682682
(l₁ ++ l₂).get? n = l₁.get? n := by
@@ -1236,21 +1236,21 @@ List.decidablePairwise
12361236
/-- pad `l : List α` with repeated occurrences of `a : α` until it's of length `n`.
12371237
If `l` is initially larger than `n`, just return `l`. -/
12381238
def leftpad (n : ℕ) (a : α) (l : List α) : List α :=
1239-
repeat a (n - length l) ++ l
1239+
repeat' a (n - length l) ++ l
12401240

12411241
/-- The length of the List returned by `List.leftpad n a l` is equal
12421242
to the larger of `n` and `l.length` -/
12431243
theorem leftpad_length (n : ℕ) (a : α) (l : List α) : (leftpad n a l).length = max n l.length :=
1244-
by simp only [leftpad, length_append, length_repeat, Nat.sub_add_eq_max]
1244+
by simp only [leftpad, length_append, length_repeat', Nat.sub_add_eq_max]
12451245

1246-
theorem leftpad_prefix [DecidableEq α] (n : ℕ) (a : α) (l : List α) : isPrefix (repeat a (n - length l)) (leftpad n a l) :=
1246+
theorem leftpad_prefix [DecidableEq α] (n : ℕ) (a : α) (l : List α) : isPrefix (repeat' a (n - length l)) (leftpad n a l) :=
12471247
by
12481248
simp only [isPrefix, leftpad]
12491249
exact Exists.intro l rfl
12501250

12511251
theorem leftpad_suffix [DecidableEq α] (n : ℕ) (a : α) (l : List α) : isSuffix l (leftpad n a l) :=
12521252
by
12531253
simp only [isSuffix, leftpad]
1254-
exact Exists.intro (repeat a (n - length l)) rfl
1254+
exact Exists.intro (repeat' a (n - length l)) rfl
12551255

12561256
end List

Mathlib/Data/Nat/Basic.lean

Lines changed: 0 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -39,10 +39,6 @@ protected lemma not_le {n m : ℕ} : ¬ n ≤ m ↔ m < n :=
3939
protected lemma lt_or_eq_of_le {n m : ℕ} (h : n ≤ m) : n < m ∨ n = m :=
4040
(Nat.lt_or_ge _ _).imp_right (Nat.le_antisymm h)
4141

42-
lemma eq_of_mul_eq_mul_right {n m k : ℕ} (Hm : 0 < m) (H : n * m = k * m) : n = k :=
43-
by rw [Nat.mul_comm n m, Nat.mul_comm k m] at H
44-
exact Nat.eq_of_mul_eq_mul_left Hm H
45-
4642
theorem le_zero_iff {i : ℕ} : i ≤ 0 ↔ i = 0 :=
4743
⟨Nat.eq_zero_of_le_zero, λ h => h ▸ le_refl i⟩
4844

Mathlib/Data/String/Defs.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -7,7 +7,7 @@ namespace String
77
def leftpad (n : Nat) (c : Char) (s : String) : String :=
88
⟨List.leftpad n c s.data⟩
99

10-
def repeat (c : Char) (n : Nat) : String := ⟨List.repeat c n⟩
10+
def repeat' (c : Char) (n : Nat) : String := ⟨List.repeat' c n⟩
1111

1212
def isPrefix : String -> String -> Prop
1313
| ⟨d1⟩, ⟨d2⟩ => List.isPrefix d1 d2

Mathlib/Data/String/Lemmas.lean

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -12,8 +12,8 @@ lemma congr_append : ∀ (a b : String), a ++ b = String.mk (a.data ++ b.data)
1212
simp only [String.length]
1313
exact List.length_append as bs
1414

15-
@[simp] lemma length_repeat (c : Char) (n : ℕ) : (repeat c n).length = n :=
16-
by simp only [String.length, String.repeat, List.length_repeat]
15+
@[simp] lemma length_repeat' (c : Char) (n : ℕ) : (repeat' c n).length = n :=
16+
by simp only [String.length, String.repeat', List.length_repeat']
1717

1818
lemma length_eq_list_length (l : List Char) : (String.mk l).length = l.length :=
1919
by simp only [String.length]
@@ -23,10 +23,10 @@ by simp only [String.length]
2323
@[simp] lemma leftpad_length (n : ℕ) (c : Char) : ∀ (s : String), (leftpad n c s).length = max n s.length
2424
| ⟨s⟩ => by simp only [leftpad, String.length, List.leftpad_length]
2525

26-
lemma leftpad_prefix (n : ℕ) (c : Char) : ∀ s, isPrefix (repeat c (n - length s)) (leftpad n c s)
27-
| ⟨l⟩ => by simp only [isPrefix, repeat, leftpad, String.length, List.leftpad_prefix]
26+
lemma leftpad_prefix (n : ℕ) (c : Char) : ∀ s, isPrefix (repeat' c (n - length s)) (leftpad n c s)
27+
| ⟨l⟩ => by simp only [isPrefix, repeat', leftpad, String.length, List.leftpad_prefix]
2828

2929
lemma leftpad_suffix (n : ℕ) (c : Char) : ∀ s, isSuffix s (leftpad n c s)
30-
| ⟨l⟩ => by simp only [isSuffix, repeat, leftpad, String.length, List.leftpad_suffix]
30+
| ⟨l⟩ => by simp only [isSuffix, repeat', leftpad, String.length, List.leftpad_suffix]
3131

3232
end String

Mathlib/Init/Data/List/Basic.lean

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -131,9 +131,9 @@ protected def inter [DecidableEq α] (l₁ l₂ : List α) : List α :=
131131

132132
instance [DecidableEq α] : Inter (List α) := ⟨List.inter⟩
133133

134-
@[simp] def repeat (a : α) : Nat → List α
134+
@[simp] def repeat' (a : α) : Nat → List α
135135
| 0 => []
136-
| succ n => a :: repeat a n
136+
| succ n => a :: repeat' a n
137137

138138
def last! [Inhabited α] : List α → α
139139
| [] => panic! "empty list"

Mathlib/Init/Data/List/Lemmas.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -10,7 +10,7 @@ namespace List
1010

1111
open Nat
1212

13-
@[simp] theorem length_repeat (a : α) (n : Nat) : length (repeat a n) = n := by
13+
@[simp] theorem length_repeat' (a : α) (n : Nat) : length (repeat' a n) = n := by
1414
induction n <;> simp_all
1515

1616
@[simp] theorem length_tail (l : List α) : length (tail l) = length l - 1 := by cases l <;> rfl

Mathlib/Init/Data/Nat/Lemmas.lean

Lines changed: 1 addition & 24 deletions
Original file line numberDiff line numberDiff line change
@@ -60,15 +60,6 @@ lemma pred_lt_pred : ∀ {n m : ℕ}, n ≠ 0 → n < m → pred n < pred m
6060
protected lemma add_left_cancel_iff {n m k : ℕ} : n + m = n + k ↔ m = k :=
6161
⟨Nat.add_left_cancel, fun | rfl => rfl⟩
6262

63-
protected lemma le_of_add_le_add_left {k n m : ℕ} (h : k + n ≤ k + m) : n ≤ m := by
64-
let ⟨w, hw⟩ := le.dest h
65-
rw [Nat.add_assoc, Nat.add_left_cancel_iff] at hw
66-
exact Nat.le.intro hw
67-
68-
protected lemma le_of_add_le_add_right {k n m : ℕ} : n + k ≤ m + k → n ≤ m := by
69-
rw [Nat.add_comm _ k, Nat.add_comm _ k]
70-
apply Nat.le_of_add_le_add_left
71-
7263
protected lemma add_le_add_iff_le_right (k n m : ℕ) : n + k ≤ m + k ↔ n ≤ m :=
7364
⟨Nat.le_of_add_le_add_right, fun h => Nat.add_le_add_right h _⟩
7465

@@ -88,13 +79,6 @@ Nat.add_lt_add_left h n
8879
protected lemma lt_add_of_pos_left {n k : ℕ} (h : 0 < k) : n < k + n :=
8980
by rw [Nat.add_comm]; exact Nat.lt_add_of_pos_right h
9081

91-
protected lemma le_of_mul_le_mul_left {a b c : ℕ} (h : c * a ≤ c * b) (hc : 0 < c) : a ≤ b :=
92-
not_lt.1 fun h1 => not_le.2 (Nat.mul_lt_mul_of_pos_left h1 hc) h
93-
94-
protected theorem eq_of_mul_eq_mul_left {m k n : ℕ} (Hn : 0 < n) (H : n * m = n * k) : m = k :=
95-
Nat.le_antisymm (Nat.le_of_mul_le_mul_left (Nat.le_of_eq H) Hn)
96-
(Nat.le_of_mul_le_mul_left (Nat.le_of_eq H.symm) Hn)
97-
9882
/- sub properties -/
9983

10084
attribute [simp] Nat.zero_sub
@@ -131,9 +115,6 @@ protected lemma le_of_le_of_sub_le_sub_right {n m k : ℕ} (h₀ : k ≤ m) (h
131115
protected lemma sub_le_sub_right_iff {n m k : ℕ} (h : k ≤ m) : n - k ≤ m - k ↔ n ≤ m :=
132116
⟨Nat.le_of_le_of_sub_le_sub_right h, fun h => Nat.sub_le_sub_right h k⟩
133117

134-
protected theorem sub_self_add (n m : ℕ) : n - (n + m) = 0 :=
135-
show (n + 0) - (n + m) = 0 by rw [Nat.add_sub_add_left, Nat.zero_sub]
136-
137118
protected theorem add_le_to_le_sub (x : ℕ) {y k : ℕ}
138119
(h : k ≤ y)
139120
: x + k ≤ y ↔ x ≤ y - k :=
@@ -153,10 +134,6 @@ rfl
153134
theorem succ_pred_eq_of_pos : ∀ {n : ℕ}, 0 < n → succ (pred n) = n
154135
| succ k, h => rfl
155136

156-
protected theorem sub_eq_zero_of_le {n m : ℕ} (h : n ≤ m) : n - m = 0 :=
157-
Exists.elim (Nat.le.dest h)
158-
(λ k => λ hk : n + k = m => by rw [← hk, Nat.sub_self_add])
159-
160137
protected theorem le_of_sub_eq_zero : ∀{n m : ℕ}, n - m = 0 → n ≤ m
161138
| n, 0, H => by rw [Nat.sub_zero] at H; simp [H]
162139
| 0, m+1, H => Nat.zero_le (m + 1)
@@ -540,7 +517,7 @@ lemma sub_mul_mod (x k n : ℕ) (h₁ : n*k ≤ x) : (x - n*k) % n = x % n := by
540517
apply Nat.le_trans _ h₁
541518
apply le_add_right _ n
542519
have h₄ : x - n * k ≥ n := by
543-
apply Nat.le_of_add_le_add_right (k := n*k)
520+
apply Nat.le_of_add_le_add_right (b := n*k)
544521
rw [Nat.sub_add_cancel h₂]
545522
simp [mul_succ, Nat.add_comm] at h₁; simp [h₁]
546523
rw [mul_succ, ← Nat.sub_sub, ← mod_eq_sub_mod h₄, IH h₂]

Mathlib/Logic/Basic.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -568,7 +568,7 @@ section equality
568568

569569
variable {α : Sort _} {a b : α}
570570

571-
@[simp] theorem heq_iff_eq : HEq a b ↔ a = b :=
571+
theorem heq_iff_eq : HEq a b ↔ a = b :=
572572
⟨eq_of_heq, heq_of_eq⟩
573573

574574
theorem proof_irrel_heq {p q : Prop} (hp : p) (hq : q) : HEq hp hq :=

Mathlib/Util/Simp.lean

Lines changed: 0 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -38,8 +38,6 @@ toUnfold: {s.toUnfold.toList}
3838
erased: {s.erased.toList}
3939
toUnfoldThms: {s.toUnfoldThms.toList}"
4040

41-
export private mkEqTrans from Lean.Meta.Tactic.Simp.Main
42-
4341
def mkEqSymm (e : Expr) (r : Simp.Result) : MetaM Simp.Result :=
4442
({ expr := e, proof? := · }) <$>
4543
match r.proof? with

lean-toolchain

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1 +1 @@
1-
leanprover/lean4:nightly-2022-02-21
1+
leanprover/lean4:nightly-2022-03-01

0 commit comments

Comments
 (0)