|
| 1 | +/- |
| 2 | +Copyright (c) 2024 Joël Riou. All rights reserved. |
| 3 | +Released under Apache 2.0 license as described in the file LICENSE. |
| 4 | +Authors: Joël Riou |
| 5 | +-/ |
| 6 | +import Mathlib.CategoryTheory.Iso |
| 7 | +import Mathlib.CategoryTheory.ObjectProperty.Basic |
| 8 | +import Mathlib.Order.Basic |
| 9 | + |
| 10 | +/-! # Properties of objects which are closed under isomorphisms |
| 11 | +
|
| 12 | +Given a category `C` and `P : ObjectProperty C` (i.e. `P : C → Prop`), |
| 13 | +this file introduces the type class `P.IsClosedUnderIsomorphisms`. |
| 14 | +
|
| 15 | +-/ |
| 16 | + |
| 17 | +namespace CategoryTheory |
| 18 | + |
| 19 | +variable {C : Type*} [Category C] (P Q : ObjectProperty C) |
| 20 | + |
| 21 | +namespace ObjectProperty |
| 22 | + |
| 23 | +/-- A predicate `C → Prop` on the objects of a category is closed under isomorphisms |
| 24 | +if whenever `P X`, then all the objects `Y` that are isomorphic to `X` also satisfy `P Y`. -/ |
| 25 | +class IsClosedUnderIsomorphisms : Prop where |
| 26 | + of_iso {X Y : C} (_ : X ≅ Y) (_ : P X) : P Y |
| 27 | + |
| 28 | +@[deprecated (since := "2025-02-25")] alias ClosedUnderIsomorphisms := IsClosedUnderIsomorphisms |
| 29 | + |
| 30 | +lemma prop_of_iso [IsClosedUnderIsomorphisms P] {X Y : C} (e : X ≅ Y) (hX : P X) : P Y := |
| 31 | + IsClosedUnderIsomorphisms.of_iso e hX |
| 32 | + |
| 33 | +lemma prop_iff_of_iso [IsClosedUnderIsomorphisms P] {X Y : C} (e : X ≅ Y) : P X ↔ P Y := |
| 34 | + ⟨prop_of_iso P e, prop_of_iso P e.symm⟩ |
| 35 | + |
| 36 | +lemma prop_of_isIso [IsClosedUnderIsomorphisms P] {X Y : C} (f : X ⟶ Y) [IsIso f] (hX : P X) : |
| 37 | + P Y := |
| 38 | + prop_of_iso P (asIso f) hX |
| 39 | + |
| 40 | +lemma prop_iff_of_isIso [IsClosedUnderIsomorphisms P] {X Y : C} (f : X ⟶ Y) [IsIso f] : P X ↔ P Y := |
| 41 | + prop_iff_of_iso P (asIso f) |
| 42 | + |
| 43 | +/-- The closure by isomorphisms of a predicate on objects in a category. -/ |
| 44 | +def isoClosure : ObjectProperty C := fun X => ∃ (Y : C) (_ : P Y), Nonempty (X ≅ Y) |
| 45 | + |
| 46 | +lemma prop_isoClosure_iff (X : C) : |
| 47 | + isoClosure P X ↔ ∃ (Y : C) (_ : P Y), Nonempty (X ≅ Y) := by rfl |
| 48 | + |
| 49 | +variable {P} in |
| 50 | +lemma prop_isoClosure {X Y : C} (h : P X) (e : X ⟶ Y) [IsIso e] : isoClosure P Y := |
| 51 | + ⟨X, h, ⟨(asIso e).symm⟩⟩ |
| 52 | + |
| 53 | +lemma le_isoClosure : P ≤ isoClosure P := |
| 54 | + fun X hX => ⟨X, hX, ⟨Iso.refl X⟩⟩ |
| 55 | + |
| 56 | +variable {P Q} in |
| 57 | +lemma monotone_isoClosure (h : P ≤ Q) : isoClosure P ≤ isoClosure Q := by |
| 58 | + rintro X ⟨X', hX', ⟨e⟩⟩ |
| 59 | + exact ⟨X', h _ hX', ⟨e⟩⟩ |
| 60 | + |
| 61 | +lemma isoClosure_eq_self [IsClosedUnderIsomorphisms P] : isoClosure P = P := by |
| 62 | + apply le_antisymm |
| 63 | + · intro X ⟨Y, hY, ⟨e⟩⟩ |
| 64 | + exact prop_of_iso P e.symm hY |
| 65 | + · exact le_isoClosure P |
| 66 | + |
| 67 | +lemma isoClosure_le_iff [IsClosedUnderIsomorphisms Q] : isoClosure P ≤ Q ↔ P ≤ Q := |
| 68 | + ⟨(le_isoClosure P).trans, |
| 69 | + fun h => (monotone_isoClosure h).trans (by rw [isoClosure_eq_self])⟩ |
| 70 | + |
| 71 | +instance : IsClosedUnderIsomorphisms (isoClosure P) where |
| 72 | + of_iso := by |
| 73 | + rintro X Y e ⟨Z, hZ, ⟨f⟩⟩ |
| 74 | + exact ⟨Z, hZ, ⟨e.symm.trans f⟩⟩ |
| 75 | + |
| 76 | +end ObjectProperty |
| 77 | + |
| 78 | +open ObjectProperty |
| 79 | + |
| 80 | +@[deprecated (since := "2025-02-25")] alias mem_of_iso := prop_of_iso |
| 81 | +@[deprecated (since := "2025-02-25")] alias mem_iff_of_iso := prop_iff_of_iso |
| 82 | +@[deprecated (since := "2025-02-25")] alias mem_of_isIso := prop_of_isIso |
| 83 | +@[deprecated (since := "2025-02-25")] alias mem_iff_of_isIso := prop_iff_of_isIso |
| 84 | +@[deprecated (since := "2025-02-25")] alias isoClosure := isoClosure |
| 85 | +@[deprecated (since := "2025-02-25")] alias mem_isoClosure_iff := prop_isoClosure_iff |
| 86 | +@[deprecated (since := "2025-02-25")] alias mem_isoClosure := prop_isoClosure |
| 87 | + |
| 88 | +end CategoryTheory |
0 commit comments