@@ -306,7 +306,7 @@ theorem integrallyClosed : IsIntegrallyClosed A := by
306
306
307
307
open Ring
308
308
309
- theorem dimensionLEOne : DimensionLEOne A := by
309
+ theorem dimensionLEOne : DimensionLEOne A := ⟨ by
310
310
-- We're going to show that `P` is maximal because any (maximal) ideal `M`
311
311
-- that is strictly larger would be `⊤`.
312
312
rintro P P_ne hP
@@ -340,7 +340,7 @@ theorem dimensionLEOne : DimensionLEOne A := by
340
340
obtain ⟨zy, hzy, zy_eq⟩ := (mem_coeIdeal A⁰).mp zy_mem
341
341
rw [IsFractionRing.injective A (FractionRing A) zy_eq] at hzy
342
342
-- But `P` is a prime ideal, so `z ∉ P` implies `y ∈ P`, as desired.
343
- exact mem_coeIdeal_of_mem A⁰ (Or.resolve_left (hP.mem_or_mem hzy) hzp)
343
+ exact mem_coeIdeal_of_mem A⁰ (Or.resolve_left (hP.mem_or_mem hzy) hzp)⟩
344
344
#align is_dedekind_domain_inv.dimension_le_one IsDedekindDomainInv.dimensionLEOne
345
345
346
346
/-- Showing one side of the equivalence between the definitions
@@ -381,7 +381,7 @@ theorem exists_multiset_prod_cons_le_and_prod_not_le [IsDedekindDomain A] (hNF :
381
381
rwa [Ne.def, ← Multiset.cons_erase hPZ', Multiset.prod_cons, Ideal.mul_eq_bot, not_or, ←
382
382
this] at hprodZ
383
383
-- By maximality of `P` and `M`, we have that `P ≤ M` implies `P = M`.
384
- have hPM' := (IsDedekindDomain.dimensionLEOne _ hP0 P.IsPrime).eq_of_le hM.ne_top hPM
384
+ have hPM' := (P.IsPrime.isMaximal hP0 ).eq_of_le hM.ne_top hPM
385
385
subst hPM'
386
386
-- By minimality of `Z`, erasing `P` from `Z` is exactly what we need.
387
387
refine ⟨Z.erase P, ?_, ?_⟩
@@ -989,7 +989,7 @@ variable (v : HeightOneSpectrum R) {R}
989
989
990
990
namespace HeightOneSpectrum
991
991
992
- instance isMaximal : v.asIdeal.IsMaximal := dimensionLEOne v.asIdeal v.ne_bot v.isPrime
992
+ instance isMaximal : v.asIdeal.IsMaximal := v.isPrime.isMaximal v.ne_bot
993
993
#align is_dedekind_domain.height_one_spectrum.is_maximal IsDedekindDomain.HeightOneSpectrum.isMaximal
994
994
995
995
theorem prime : Prime v.asIdeal := Ideal.prime_of_isPrime v.ne_bot v.isPrime
@@ -1005,7 +1005,7 @@ theorem associates_irreducible : Irreducible <| Associates.mk v.asIdeal :=
1005
1005
1006
1006
/-- An equivalence between the height one and maximal spectra for rings of Krull dimension 1. -/
1007
1007
def equivMaximalSpectrum (hR : ¬IsField R) : HeightOneSpectrum R ≃ MaximalSpectrum R where
1008
- toFun v := ⟨v.asIdeal, dimensionLEOne v.asIdeal v.ne_bot v.isPrime ⟩
1008
+ toFun v := ⟨v.asIdeal, v.isPrime.isMaximal v.ne_bot ⟩
1009
1009
invFun v :=
1010
1010
⟨v.asIdeal, v.IsMaximal.isPrime, Ring.ne_bot_of_isMaximal_of_not_isField v.IsMaximal hR⟩
1011
1011
left_inv := fun ⟨_, _, _⟩ => rfl
@@ -1029,7 +1029,7 @@ theorem iInf_localization_eq_bot [Algebra R K] [hK : IsFractionRing R K] :
1029
1029
exact fun _ => Algebra.mem_bot.mpr ⟨algebra_map_inv x, algebra_map_right_inv x⟩
1030
1030
all_goals rw [← MaximalSpectrum.iInf_localization_eq_bot, Algebra.mem_iInf]
1031
1031
· exact fun hx ⟨v, hv⟩ => hx ((equivMaximalSpectrum hR).symm ⟨v, hv⟩)
1032
- · exact fun hx ⟨v, hv, hbot⟩ => hx ⟨v, dimensionLEOne v hbot hv ⟩
1032
+ · exact fun hx ⟨v, hv, hbot⟩ => hx ⟨v, hv.isMaximal hbot⟩
1033
1033
#align is_dedekind_domain.height_one_spectrum.infi_localization_eq_bot IsDedekindDomain.HeightOneSpectrum.iInf_localization_eq_bot
1034
1034
1035
1035
end HeightOneSpectrum
@@ -1192,9 +1192,9 @@ open scoped BigOperators
1192
1192
1193
1193
variable {R}
1194
1194
1195
- theorem Ring.DimensionLeOne.prime_le_prime_iff_eq (h : Ring.DimensionLEOne R) {P Q : Ideal R}
1195
+ theorem Ring.DimensionLeOne.prime_le_prime_iff_eq [ Ring.DimensionLEOne R] {P Q : Ideal R}
1196
1196
[hP : P.IsPrime] [hQ : Q.IsPrime] (hP0 : P ≠ ⊥) : P ≤ Q ↔ P = Q :=
1197
- ⟨(h P hP0 hP ).eq_of_le hQ.ne_top, Eq.le⟩
1197
+ ⟨(hP.isMaximal hP0).eq_of_le hQ.ne_top, Eq.le⟩
1198
1198
#align ring.dimension_le_one.prime_le_prime_iff_eq Ring.DimensionLeOne.prime_le_prime_iff_eq
1199
1199
1200
1200
theorem Ideal.coprime_of_no_prime_ge {I J : Ideal R} (h : ∀ P, I ≤ P → J ≤ P → ¬IsPrime P) :
@@ -1290,9 +1290,9 @@ theorem IsDedekindDomain.inf_prime_pow_eq_prod {ι : Type _} (s : Finset ι) (f
1290
1290
haveI := Ideal.isPrime_of_prime (prime b (Finset.mem_insert_of_mem hb))
1291
1291
refine coprime a (Finset.mem_insert_self a s) b (Finset.mem_insert_of_mem hb) ?_ ?_
1292
1292
· rintro rfl; contradiction
1293
- · refine ((Ring.DimensionLeOne.prime_le_prime_iff_eq IsDedekindDomain.dimensionLEOne ?_).mp
1293
+ · refine ((Ring.DimensionLeOne.prime_le_prime_iff_eq ?_).mp
1294
1294
(Ideal.le_of_pow_le_prime hPa)).trans
1295
- ((Ring.DimensionLeOne.prime_le_prime_iff_eq IsDedekindDomain.dimensionLEOne ?_).mp
1295
+ ((Ring.DimensionLeOne.prime_le_prime_iff_eq ?_).mp
1296
1296
(Ideal.le_of_pow_le_prime hPb)).symm
1297
1297
exact (prime a (Finset.mem_insert_self a s)).ne_zero
1298
1298
exact (prime b (Finset.mem_insert_of_mem hb)).ne_zero
@@ -1314,9 +1314,9 @@ noncomputable def IsDedekindDomain.quotientEquivPiOfProdEq {ι : Type _} [Fintyp
1314
1314
haveI := Ideal.isPrime_of_prime (prime i)
1315
1315
haveI := Ideal.isPrime_of_prime (prime j)
1316
1316
refine coprime i j hij ?_
1317
- refine ((Ring.DimensionLeOne.prime_le_prime_iff_eq IsDedekindDomain.dimensionLEOne ?_).mp
1317
+ refine ((Ring.DimensionLeOne.prime_le_prime_iff_eq ?_).mp
1318
1318
(Ideal.le_of_pow_le_prime hPi)).trans
1319
- ((Ring.DimensionLeOne.prime_le_prime_iff_eq IsDedekindDomain.dimensionLEOne ?_).mp
1319
+ ((Ring.DimensionLeOne.prime_le_prime_iff_eq ?_).mp
1320
1320
(Ideal.le_of_pow_le_prime hPj)).symm
1321
1321
exact (prime i).ne_zero
1322
1322
exact (prime j).ne_zero)
0 commit comments