@@ -126,7 +126,7 @@ lemma Scheme.Pullback.diagonalCoverDiagonalRange_eq_top_of_injective
126
126
rw [← top_le_iff]
127
127
rintro x -
128
128
simp only [diagonalCoverDiagonalRange, openCoverOfBase_J, openCoverOfBase_obj,
129
- openCoverOfLeftRight_J, Opens.iSup_mk, Opens.carrier_eq_coe, Hom.opensRange_coe , Opens.coe_mk,
129
+ openCoverOfLeftRight_J, Opens.iSup_mk, Opens.carrier_eq_coe, Hom.coe_opensRange , Opens.coe_mk,
130
130
Set.mem_iUnion, Set.mem_range, Sigma.exists]
131
131
have H : (pullback.fst f f).base x = (pullback.snd f f).base x :=
132
132
hf (by rw [← Scheme.comp_base_apply, ← Scheme.comp_base_apply, pullback.condition])
@@ -147,7 +147,7 @@ lemma Scheme.Pullback.range_diagonal_subset_diagonalCoverDiagonalRange :
147
147
Set.range (pullback.diagonal f).base ⊆ diagonalCoverDiagonalRange f 𝒰 𝒱 := by
148
148
rintro _ ⟨x, rfl⟩
149
149
simp only [diagonalCoverDiagonalRange, openCoverOfBase_J, openCoverOfBase_obj,
150
- openCoverOfLeftRight_J, Opens.iSup_mk, Opens.carrier_eq_coe, Hom.opensRange_coe , Opens.coe_mk,
150
+ openCoverOfLeftRight_J, Opens.iSup_mk, Opens.carrier_eq_coe, Hom.coe_opensRange , Opens.coe_mk,
151
151
Set.mem_iUnion, Set.mem_range, Sigma.exists]
152
152
let i := 𝒰.f (f.base x)
153
153
obtain ⟨y : 𝒰.obj i, hy : (𝒰.map i).base y = f.base x⟩ := 𝒰.covers (f.base x)
0 commit comments