@@ -28,60 +28,8 @@ open Set Function Filter Finset Metric Asymptotics Topology Nat NNReal ENNReal
28
28
29
29
variable {Ξ± Ξ² ΞΉ : Type *}
30
30
31
- theorem tendsto_norm_atTop_atTop : Tendsto (norm : β β β) atTop atTop :=
32
- tendsto_abs_atTop_atTop
33
-
34
- theorem summable_of_absolute_convergence_real {f : β β β} :
35
- (β r, Tendsto (fun n β¦ β i β range n, |f i|) atTop (π r)) β Summable f
36
- | β¨r, hrβ© => by
37
- refine .of_norm β¨r, (hasSum_iff_tendsto_nat_of_nonneg ?_ _).2 ?_β©
38
- Β· exact fun i β¦ norm_nonneg _
39
- Β· simpa only using hr
40
-
41
31
/-! ### Powers -/
42
32
43
-
44
- theorem tendsto_norm_zero' {π : Type *} [NormedAddCommGroup π] :
45
- Tendsto (norm : π β β) (π[β ] 0 ) (π[>] 0 ) :=
46
- tendsto_norm_zero.inf <| tendsto_principal_principal.2 fun _ hx β¦ norm_pos_iff.2 hx
47
-
48
- namespace NormedField
49
-
50
- theorem tendsto_norm_inverse_nhdsWithin_0_atTop {π : Type *} [NormedDivisionRing π] :
51
- Tendsto (fun x : π β¦ βxβ»ΒΉβ) (π[β ] 0 ) atTop :=
52
- (tendsto_inv_zero_atTop.comp tendsto_norm_zero').congr fun x β¦ (norm_inv x).symm
53
-
54
- theorem tendsto_norm_zpow_nhdsWithin_0_atTop {π : Type *} [NormedDivisionRing π] {m : β€}
55
- (hm : m < 0 ) :
56
- Tendsto (fun x : π β¦ βx ^ mβ) (π[β ] 0 ) atTop := by
57
- rcases neg_surjective m with β¨m, rflβ©
58
- rw [neg_lt_zero] at hm; lift m to β using hm.le; rw [Int.natCast_pos] at hm
59
- simp only [norm_pow, zpow_neg, zpow_natCast, β inv_pow]
60
- exact (tendsto_pow_atTop hm.ne').comp NormedField.tendsto_norm_inverse_nhdsWithin_0_atTop
61
-
62
- /-- The (scalar) product of a sequence that tends to zero with a bounded one also tends to zero. -/
63
- theorem tendsto_zero_smul_of_tendsto_zero_of_bounded {ΞΉ π πΈ : Type *} [NormedDivisionRing π]
64
- [NormedAddCommGroup πΈ] [Module π πΈ] [BoundedSMul π πΈ] {l : Filter ΞΉ} {Ξ΅ : ΞΉ β π} {f : ΞΉ β πΈ}
65
- (hΞ΅ : Tendsto Ξ΅ l (π 0 )) (hf : Filter.IsBoundedUnder (Β· β€ Β·) l (norm β f)) :
66
- Tendsto (Ξ΅ β’ f) l (π 0 ) := by
67
- rw [β isLittleO_one_iff π] at hΞ΅ β’
68
- simpa using IsLittleO.smul_isBigO hΞ΅ (hf.isBigO_const (one_ne_zero : (1 : π) β 0 ))
69
-
70
- @[simp]
71
- theorem continuousAt_zpow {π : Type *} [NontriviallyNormedField π] {m : β€} {x : π} :
72
- ContinuousAt (fun x β¦ x ^ m) x β x β 0 β¨ 0 β€ m := by
73
- refine β¨?_, continuousAt_zpowβ _ _β©
74
- contrapose!; rintro β¨rfl, hmβ© hc
75
- exact not_tendsto_atTop_of_tendsto_nhds (hc.tendsto.mono_left nhdsWithin_le_nhds).norm
76
- (tendsto_norm_zpow_nhdsWithin_0_atTop hm)
77
-
78
- @[simp]
79
- theorem continuousAt_inv {π : Type *} [NontriviallyNormedField π] {x : π} :
80
- ContinuousAt Inv.inv x β x β 0 := by
81
- simpa [(zero_lt_one' β€).not_le] using @continuousAt_zpow _ _ (-1 ) x
82
-
83
- end NormedField
84
-
85
33
theorem isLittleO_pow_pow_of_lt_left {rβ rβ : β} (hβ : 0 β€ rβ) (hβ : rβ < rβ) :
86
34
(fun n : β β¦ rβ ^ n) =o[atTop] fun n β¦ rβ ^ n :=
87
35
have H : 0 < rβ := hβ.trans_lt hβ
0 commit comments