@@ -1464,32 +1464,31 @@ open TopologicalSpace
1464
1464
1465
1465
variable (e : PartialHomeomorph X Y)
1466
1466
1467
- variable ( s : Opens X) (hs : Nonempty s)
1467
+ variable { s : Opens X} (hs : Nonempty s)
1468
1468
1469
1469
/-- The restriction of a partial homeomorphism `e` to an open subset `s` of the domain type
1470
1470
produces a partial homeomorphism whose domain is the subtype `s`. -/
1471
1471
noncomputable def subtypeRestr : PartialHomeomorph s Y :=
1472
1472
(s.partialHomeomorphSubtypeCoe hs).trans e
1473
1473
#align local_homeomorph.subtype_restr PartialHomeomorph.subtypeRestr
1474
1474
1475
- theorem subtypeRestr_def : e.subtypeRestr s hs = (s.partialHomeomorphSubtypeCoe hs).trans e :=
1475
+ theorem subtypeRestr_def : e.subtypeRestr hs = (s.partialHomeomorphSubtypeCoe hs).trans e :=
1476
1476
rfl
1477
1477
#align local_homeomorph.subtype_restr_def PartialHomeomorph.subtypeRestr_def
1478
1478
1479
1479
@[simp, mfld_simps]
1480
1480
theorem subtypeRestr_coe :
1481
- ((e.subtypeRestr s hs : PartialHomeomorph s Y) : s → Y) = Set.restrict ↑s (e : X → Y) :=
1481
+ ((e.subtypeRestr hs : PartialHomeomorph s Y) : s → Y) = Set.restrict ↑s (e : X → Y) :=
1482
1482
rfl
1483
1483
#align local_homeomorph.subtype_restr_coe PartialHomeomorph.subtypeRestr_coe
1484
1484
1485
1485
@[simp, mfld_simps]
1486
- theorem subtypeRestr_source : (e.subtypeRestr s hs).source = (↑) ⁻¹' e.source := by
1486
+ theorem subtypeRestr_source : (e.subtypeRestr hs).source = (↑) ⁻¹' e.source := by
1487
1487
simp only [subtypeRestr_def, mfld_simps]
1488
1488
#align local_homeomorph.subtype_restr_source PartialHomeomorph.subtypeRestr_source
1489
1489
1490
- variable {s} in
1491
1490
theorem map_subtype_source {x : s} (hxe : (x : X) ∈ e.source) :
1492
- e x ∈ (e.subtypeRestr s hs).target := by
1491
+ e x ∈ (e.subtypeRestr hs).target := by
1493
1492
refine' ⟨e.map_source hxe, _⟩
1494
1493
rw [s.partialHomeomorphSubtypeCoe_target, mem_preimage, e.leftInvOn hxe]
1495
1494
exact x.prop
@@ -1498,7 +1497,7 @@ theorem map_subtype_source {x : s} (hxe : (x : X) ∈ e.source) :
1498
1497
/- This lemma characterizes the transition functions of an open subset in terms of the transition
1499
1498
functions of the original space. -/
1500
1499
theorem subtypeRestr_symm_trans_subtypeRestr (f f' : PartialHomeomorph X Y) :
1501
- (f.subtypeRestr s hs).symm.trans (f'.subtypeRestr s hs) ≈
1500
+ (f.subtypeRestr hs).symm.trans (f'.subtypeRestr hs) ≈
1502
1501
(f.symm.trans f').restr (f.target ∩ f.symm ⁻¹' s) := by
1503
1502
simp only [subtypeRestr_def, trans_symm_eq_symm_trans_symm]
1504
1503
have openness₁ : IsOpen (f.target ∩ f.symm ⁻¹' s) := f.isOpen_inter_preimage_symm s.2
@@ -1515,17 +1514,17 @@ theorem subtypeRestr_symm_trans_subtypeRestr (f f' : PartialHomeomorph X Y) :
1515
1514
simp only [mfld_simps, Setoid.refl]
1516
1515
#align local_homeomorph.subtype_restr_symm_trans_subtype_restr PartialHomeomorph.subtypeRestr_symm_trans_subtypeRestr
1517
1516
1518
- theorem subtypeRestr_symm_eqOn ( U : Opens X) (hU : Nonempty U) :
1519
- EqOn e.symm (Subtype.val ∘ (e.subtypeRestr U hU).symm) (e.subtypeRestr U hU).target := by
1517
+ theorem subtypeRestr_symm_eqOn { U : Opens X} (hU : Nonempty U) :
1518
+ EqOn e.symm (Subtype.val ∘ (e.subtypeRestr hU).symm) (e.subtypeRestr hU).target := by
1520
1519
intro y hy
1521
1520
rw [eq_comm, eq_symm_apply _ _ hy.1 ]
1522
1521
· change restrict _ e _ = _
1523
- rw [← subtypeRestr_coe, (e.subtypeRestr U hU).right_inv hy]
1522
+ rw [← subtypeRestr_coe, (e.subtypeRestr hU).right_inv hy]
1524
1523
· have := map_target _ hy; rwa [subtypeRestr_source] at this
1525
1524
1526
1525
theorem subtypeRestr_symm_eqOn_of_le {U V : Opens X} (hU : Nonempty U) (hV : Nonempty V)
1527
- (hUV : U ≤ V) : EqOn (e.subtypeRestr V hV).symm (Set.inclusion hUV ∘ (e.subtypeRestr U hU).symm)
1528
- (e.subtypeRestr U hU).target := by
1526
+ (hUV : U ≤ V) : EqOn (e.subtypeRestr hV).symm (Set.inclusion hUV ∘ (e.subtypeRestr hU).symm)
1527
+ (e.subtypeRestr hU).target := by
1529
1528
set i := Set.inclusion hUV
1530
1529
intro y hy
1531
1530
dsimp [PartialHomeomorph.subtypeRestr_def] at hy ⊢
0 commit comments