Skip to content

Commit fe9b9d8

Browse files
committed
chore(whitespace): yet some more whitespace changes (#22854)
Found by #22760.
1 parent 121c5ee commit fe9b9d8

File tree

16 files changed

+41
-41
lines changed

16 files changed

+41
-41
lines changed

Mathlib/Algebra/Ring/Subring/IntPolynomial.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -36,7 +36,7 @@ namespace Polynomial
3636
variable (P : K[X]) (hP : ∀ n : ℕ, P.coeff n ∈ R)
3737

3838
@[simp]
39-
theorem int_coeff_eq (n : ℕ) : ↑((P.int R hP).coeff n) = P.coeff n := rfl
39+
theorem int_coeff_eq (n : ℕ) : ↑((P.int R hP).coeff n) = P.coeff n := rfl
4040

4141
@[simp]
4242
theorem int_leadingCoeff_eq : ↑(P.int R hP).leadingCoeff = P.leadingCoeff := rfl

Mathlib/Algebra/SkewMonoidAlgebra/Basic.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -301,7 +301,7 @@ theorem ofFinsupp_eq_one {a} :
301301
(⟨a⟩ : SkewMonoidAlgebra k G) = 1 ↔ a = Finsupp.single 1 1 := by
302302
rw [← ofFinsupp_one, ofFinsupp_inj]
303303

304-
theorem single_one_one : single 1 (1 : k) = 1 := rfl
304+
theorem single_one_one : single 1 (1 : k) = 1 := rfl
305305

306306
theorem one_def : (1 : SkewMonoidAlgebra k G) = single 1 1 := rfl
307307

Mathlib/Algebra/Star/Unitary.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -122,7 +122,7 @@ def toUnits : unitary R →* Rˣ where
122122
theorem toUnits_injective : Function.Injective (toUnits : unitary R → Rˣ) := fun _ _ h =>
123123
Subtype.ext <| Units.ext_iff.mp h
124124

125-
theorem _root_.IsUnit.mem_unitary_of_star_mul_self {u : R} (hu : IsUnit u)
125+
theorem _root_.IsUnit.mem_unitary_of_star_mul_self {u : R} (hu : IsUnit u)
126126
(h_mul : star u * u = 1) : u ∈ unitary R := by
127127
refine unitary.mem_iff.mpr ⟨h_mul, ?_⟩
128128
lift u to Rˣ using hu

Mathlib/Algebra/Vertex/HVertexOperator.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -100,7 +100,7 @@ end Coeff
100100
section Products
101101

102102
variable {Γ Γ' : Type*} [OrderedCancelAddCommMonoid Γ] [OrderedCancelAddCommMonoid Γ'] {R : Type*}
103-
[CommRing R] {U V W : Type*} [AddCommGroup U] [Module R U][AddCommGroup V] [Module R V]
103+
[CommRing R] {U V W : Type*} [AddCommGroup U] [Module R U] [AddCommGroup V] [Module R V]
104104
[AddCommGroup W] [Module R W] (A : HVertexOperator Γ R V W) (B : HVertexOperator Γ' R U V)
105105

106106
open HahnModule

Mathlib/Algebra/Vertex/VertexOperator.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -91,7 +91,7 @@ theorem of_coeff_apply_coeff (f : ℤ → Module.End R V)
9191

9292
@[simp]
9393
theorem ncoeff_of_coeff (f : ℤ → Module.End R V)
94-
(hf : ∀(x : V), ∃(n : ℤ), ∀(m : ℤ), m < n → (f m) x = 0) (n : ℤ) :
94+
(hf : ∀ (x : V), ∃ (n : ℤ), ∀ (m : ℤ), m < n → (f m) x = 0) (n : ℤ) :
9595
(of_coeff f hf) [[n]] = f (-n - 1) := by
9696
ext v
9797
rw [ncoeff, coeff_apply, of_coeff_apply_coeff]

Mathlib/CategoryTheory/Category/Quiv.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -120,7 +120,7 @@ def homEquivOfIso {V W : Quiv} (e : V ≅ W) {X Y : V} :
120120
end
121121

122122
section
123-
variable {V W : Type u } [Quiver V] [Quiver W]
123+
variable {V W : Type u} [Quiver V] [Quiver W]
124124
(e : V ≃ W) (he : ∀ X Y : V, (X ⟶ Y) ≃ (e X ⟶ e Y))
125125

126126
include he in

Mathlib/CategoryTheory/Sigma/Basic.lean

Lines changed: 23 additions & 23 deletions
Original file line numberDiff line numberDiff line change
@@ -25,25 +25,25 @@ variable {I : Type w₁} {C : I → Type u₁} [∀ i, Category.{v₁} (C i)]
2525
/-- The type of morphisms of a disjoint union of categories: for `X : C i` and `Y : C j`, a morphism
2626
`(i, X) ⟶ (j, Y)` if `i = j` is just a morphism `X ⟶ Y`, and if `i ≠ j` there are no such morphisms.
2727
-/
28-
inductive SigmaHom : (Σi, C i) → (Σi, C i) → Type max w₁ v₁ u₁
28+
inductive SigmaHom : (Σ i, C i) → (Σ i, C i) → Type max w₁ v₁ u₁
2929
| mk : ∀ {i : I} {X Y : C i}, (X ⟶ Y) → SigmaHom ⟨i, X⟩ ⟨i, Y⟩
3030

3131
namespace SigmaHom
3232

3333
/-- The identity morphism on an object. -/
34-
def id : ∀ X : Σi, C i, SigmaHom X X
34+
def id : ∀ X : Σ i, C i, SigmaHom X X
3535
| ⟨_, _⟩ => mk (𝟙 _)
3636
-- Porting note: reordered universes
3737

38-
instance (X : Σi, C i) : Inhabited (SigmaHom X X) :=
38+
instance (X : Σ i, C i) : Inhabited (SigmaHom X X) :=
3939
⟨id X⟩
4040

4141
/-- Composition of sigma homomorphisms. -/
42-
def comp : ∀ {X Y Z : Σi, C i}, SigmaHom X Y → SigmaHom Y Z → SigmaHom X Z
42+
def comp : ∀ {X Y Z : Σ i, C i}, SigmaHom X Y → SigmaHom Y Z → SigmaHom X Z
4343
| _, _, _, mk f, mk g => mk (f ≫ g)
4444
-- Porting note: reordered universes
4545

46-
instance : CategoryStruct (Σi, C i) where
46+
instance : CategoryStruct (Σ i, C i) where
4747
Hom := SigmaHom
4848
id := id
4949
comp f g := comp f g
@@ -52,36 +52,36 @@ instance : CategoryStruct (Σi, C i) where
5252
lemma comp_def (i : I) (X Y Z : C i) (f : X ⟶ Y) (g : Y ⟶ Z) : comp (mk f) (mk g) = mk (f ≫ g) :=
5353
rfl
5454

55-
lemma assoc : ∀ {X Y Z W : Σi, C i} (f : X ⟶ Y) (g : Y ⟶ Z) (h : Z ⟶ W), (f ≫ g) ≫ h = f ≫ g ≫ h
55+
lemma assoc : ∀ {X Y Z W : Σ i, C i} (f : X ⟶ Y) (g : Y ⟶ Z) (h : Z ⟶ W), (f ≫ g) ≫ h = f ≫ g ≫ h
5656
| _, _, _, _, mk _, mk _, mk _ => congr_arg mk (Category.assoc _ _ _)
5757

58-
lemma id_comp : ∀ {X Y : Σi, C i} (f : X ⟶ Y), 𝟙 X ≫ f = f
58+
lemma id_comp : ∀ {X Y : Σ i, C i} (f : X ⟶ Y), 𝟙 X ≫ f = f
5959
| _, _, mk _ => congr_arg mk (Category.id_comp _)
6060

61-
lemma comp_id : ∀ {X Y : Σi, C i} (f : X ⟶ Y), f ≫ 𝟙 Y = f
61+
lemma comp_id : ∀ {X Y : Σ i, C i} (f : X ⟶ Y), f ≫ 𝟙 Y = f
6262
| _, _, mk _ => congr_arg mk (Category.comp_id _)
6363

6464
end SigmaHom
6565

66-
instance sigma : Category (Σi, C i) where
66+
instance sigma : Category (Σ i, C i) where
6767
id_comp := SigmaHom.id_comp
6868
comp_id := SigmaHom.comp_id
6969
assoc := SigmaHom.assoc
7070

7171
/-- The inclusion functor into the disjoint union of categories. -/
7272
@[simps map]
73-
def incl (i : I) : C i ⥤ Σi, C i where
73+
def incl (i : I) : C i ⥤ Σ i, C i where
7474
obj X := ⟨i, X⟩
7575
map := SigmaHom.mk
7676

7777
@[simp]
7878
lemma incl_obj {i : I} (X : C i) : (incl i).obj X = ⟨i, X⟩ :=
7979
rfl
8080

81-
instance (i : I) : Functor.Full (incl i : C i ⥤ Σi, C i) where
81+
instance (i : I) : Functor.Full (incl i : C i ⥤ Σ i, C i) where
8282
map_surjective := fun ⟨f⟩ => ⟨f, rfl⟩
8383

84-
instance (i : I) : Functor.Faithful (incl i : C i ⥤ Σi, C i) where
84+
instance (i : I) : Functor.Faithful (incl i : C i ⥤ Σ i, C i) where
8585
map_injective {_ _ _ _} h := by injection h
8686

8787
section
@@ -92,19 +92,19 @@ variable {D : Type u₂} [Category.{v₂} D] (F : ∀ i, C i ⥤ D)
9292
To build a natural transformation over the sigma category, it suffices to specify it restricted to
9393
each subcategory.
9494
-/
95-
def natTrans {F G : (Σi, C i) ⥤ D} (h : ∀ i : I, incl i ⋙ F ⟶ incl i ⋙ G) : F ⟶ G where
95+
def natTrans {F G : (Σ i, C i) ⥤ D} (h : ∀ i : I, incl i ⋙ F ⟶ incl i ⋙ G) : F ⟶ G where
9696
app := fun ⟨j, X⟩ => (h j).app X
9797
naturality := by
9898
rintro ⟨j, X⟩ ⟨_, _⟩ ⟨f⟩
9999
apply (h j).naturality
100100

101101
@[simp]
102-
lemma natTrans_app {F G : (Σi, C i) ⥤ D} (h : ∀ i : I, incl i ⋙ F ⟶ incl i ⋙ G) (i : I)
102+
lemma natTrans_app {F G : (Σ i, C i) ⥤ D} (h : ∀ i : I, incl i ⋙ F ⟶ incl i ⋙ G) (i : I)
103103
(X : C i) : (natTrans h).app ⟨i, X⟩ = (h i).app X :=
104104
rfl
105105

106106
/-- (Implementation). An auxiliary definition to build the functor `desc`. -/
107-
def descMap : ∀ X Y : Σi, C i, (X ⟶ Y) → ((F X.1).obj X.2 ⟶ (F Y.1).obj Y.2)
107+
def descMap : ∀ X Y : Σ i, C i, (X ⟶ Y) → ((F X.1).obj X.2 ⟶ (F Y.1).obj Y.2)
108108
| _, _, SigmaHom.mk g => (F _).map g
109109
-- Porting note: reordered universes
110110

@@ -117,7 +117,7 @@ this property.
117117
This witnesses that the sigma-type is the coproduct in Cat.
118118
-/
119119
@[simps obj]
120-
def desc : (Σi, C i) ⥤ D where
120+
def desc : (Σ i, C i) ⥤ D where
121121
obj X := (F X.1).obj X.2
122122
map g := descMap F _ _ g
123123
map_id := by
@@ -149,26 +149,26 @@ lemma inclDesc_inv_app (i : I) (X : C i) : (inclDesc F i).inv.app X = 𝟙 ((F i
149149
/-- If `q` when restricted to each subcategory `C i` agrees with `F i`, then `q` is isomorphic to
150150
`desc F`.
151151
-/
152-
def descUniq (q : (Σi, C i) ⥤ D) (h : ∀ i, incl i ⋙ q ≅ F i) : q ≅ desc F :=
152+
def descUniq (q : (Σ i, C i) ⥤ D) (h : ∀ i, incl i ⋙ q ≅ F i) : q ≅ desc F :=
153153
NatIso.ofComponents (fun ⟨i, X⟩ => (h i).app X) <| by
154154
rintro ⟨i, X⟩ ⟨_, _⟩ ⟨f⟩
155155
apply (h i).hom.naturality f
156156

157157
@[simp]
158-
lemma descUniq_hom_app (q : (Σi, C i) ⥤ D) (h : ∀ i, incl i ⋙ q ≅ F i) (i : I) (X : C i) :
158+
lemma descUniq_hom_app (q : (Σ i, C i) ⥤ D) (h : ∀ i, incl i ⋙ q ≅ F i) (i : I) (X : C i) :
159159
(descUniq F q h).hom.app ⟨i, X⟩ = (h i).hom.app X :=
160160
rfl
161161

162162
@[simp]
163-
lemma descUniq_inv_app (q : (Σi, C i) ⥤ D) (h : ∀ i, incl i ⋙ q ≅ F i) (i : I) (X : C i) :
163+
lemma descUniq_inv_app (q : (Σ i, C i) ⥤ D) (h : ∀ i, incl i ⋙ q ≅ F i) (i : I) (X : C i) :
164164
(descUniq F q h).inv.app ⟨i, X⟩ = (h i).inv.app X :=
165165
rfl
166166

167167
/--
168168
If `q₁` and `q₂` when restricted to each subcategory `C i` agree, then `q₁` and `q₂` are isomorphic.
169169
-/
170170
@[simps]
171-
def natIso {q₁ q₂ : (Σi, C i) ⥤ D} (h : ∀ i, incl i ⋙ q₁ ≅ incl i ⋙ q₂) : q₁ ≅ q₂ where
171+
def natIso {q₁ q₂ : (Σ i, C i) ⥤ D} (h : ∀ i, incl i ⋙ q₁ ≅ incl i ⋙ q₂) : q₁ ≅ q₂ where
172172
hom := natTrans fun i => (h i).hom
173173
inv := natTrans fun i => (h i).inv
174174

@@ -179,7 +179,7 @@ section
179179
variable (C) {J : Type w₂} (g : J → I)
180180

181181
/-- A function `J → I` induces a functor `Σ j, C (g j) ⥤ Σ i, C i`. -/
182-
def map : (Σj : J, C (g j)) ⥤ Σi : I, C i :=
182+
def map : (Σj : J, C (g j)) ⥤ Σ i : I, C i :=
183183
desc fun j => incl (g j)
184184

185185
@[simp]
@@ -201,7 +201,7 @@ variable (I)
201201

202202
/-- The functor `Sigma.map` applied to the identity function is just the identity functor. -/
203203
@[simps!]
204-
def mapId : map C (id : I → I) ≅ 𝟭 (Σi, C i) :=
204+
def mapId : map C (id : I → I) ≅ 𝟭 (Σ i, C i) :=
205205
natIso fun i => NatIso.ofComponents fun _ => Iso.refl _
206206

207207
variable {I} {K : Type w₃}
@@ -223,7 +223,7 @@ variable {D : I → Type u₁} [∀ i, Category.{v₁} (D i)]
223223

224224
/-- Assemble an `I`-indexed family of functors into a functor between the sigma types.
225225
-/
226-
def sigma (F : ∀ i, C i ⥤ D i) : (Σi, C i) ⥤ Σi, D i :=
226+
def sigma (F : ∀ i, C i ⥤ D i) : (Σ i, C i) ⥤ Σ i, D i :=
227227
desc fun i => F i ⋙ incl i
228228

229229
end Functor

Mathlib/Combinatorics/SimpleGraph/Matching.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -53,7 +53,7 @@ assert_not_exists Field TwoSidedIdeal
5353
open Function
5454

5555
namespace SimpleGraph
56-
variable {V W : Type*} {G G': SimpleGraph V} {M M' : Subgraph G} {v w : V}
56+
variable {V W : Type*} {G G' : SimpleGraph V} {M M' : Subgraph G} {v w : V}
5757

5858
namespace Subgraph
5959

Mathlib/Combinatorics/SimpleGraph/Path.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1266,7 +1266,7 @@ def IsBridge (G : SimpleGraph V) (e : Sym2 V) : Prop :=
12661266
theorem isBridge_iff {u v : V} :
12671267
G.IsBridge s(u, v) ↔ G.Adj u v ∧ ¬(G \ fromEdgeSet {s(u, v)}).Reachable u v := Iff.rfl
12681268

1269-
theorem reachable_delete_edges_iff_exists_walk {v w v' w': V} :
1269+
theorem reachable_delete_edges_iff_exists_walk {v w v' w' : V} :
12701270
(G \ fromEdgeSet {s(v, w)}).Reachable v' w' ↔ ∃ p : G.Walk v' w', ¬s(v, w) ∈ p.edges := by
12711271
constructor
12721272
· rintro ⟨p⟩

Mathlib/Data/Matrix/Invertible.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -117,7 +117,7 @@ section Woodbury
117117

118118
variable [Fintype m] [DecidableEq m] [Ring α]
119119
(A : Matrix n n α) (U : Matrix n m α) (C : Matrix m m α) (V : Matrix m n α)
120-
[Invertible A] [Invertible C] [Invertible (⅟C + V * ⅟A * U)]
120+
[Invertible A] [Invertible C] [Invertible (⅟ C + V * ⅟ A * U)]
121121

122122
-- No spaces around multiplication signs for better clarity
123123
lemma add_mul_mul_invOf_mul_eq_one :

0 commit comments

Comments
 (0)