Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Merged by Bors] - field_simp: Use positivity as a discharger #6312

Closed
wants to merge 16 commits into from
3 changes: 0 additions & 3 deletions Archive/Imo/Imo2005Q3.lean
Original file line number Diff line number Diff line change
Expand Up @@ -25,9 +25,6 @@ namespace Imo2005Q3

theorem key_insight (x y z : ℝ) (hx : x > 0) (hy : y > 0) (hz : z > 0) (h : x * y * z ≥ 1) :
(x ^ 5 - x ^ 2) / (x ^ 5 + y ^ 2 + z ^ 2) ≥ (x ^ 2 - y * z) / (x ^ 2 + y ^ 2 + z ^ 2) := by
have h₁ : x ^ 5 + y ^ 2 + z ^ 2 ≠ 0 := by positivity
have h₃ : x ^ 2 + y ^ 2 + z ^ 2 ≠ 0 := by positivity
have h₄ : x ^ 3 * (x ^ 2 + y ^ 2 + z ^ 2) ≠ 0 := by positivity
have key :
(x ^ 5 - x ^ 2) / (x ^ 5 + y ^ 2 + z ^ 2) -
(x ^ 5 - x ^ 2 * 1) / (x ^ 3 * (x ^ 2 + y ^ 2 + z ^ 2)) =
Expand Down
3 changes: 0 additions & 3 deletions Archive/Imo/Imo2008Q2.lean
Original file line number Diff line number Diff line change
Expand Up @@ -68,10 +68,7 @@ theorem imo2008_q2b : Set.Infinite rationalSolutions := by
simp only [Set.mem_setOf_eq] at hs_in_W ⊢
rcases hs_in_W with ⟨x, y, z, h₁, t, ht_gt_zero, hx_t, hy_t, hz_t⟩
use x, y, z
have ht_ne_zero : t ≠ 0 := ne_of_gt ht_gt_zero
have ht1_ne_zero : t + 1 ≠ 0; linarith [ht_gt_zero]
have key_gt_zero : t ^ 2 + t + 1 > 0; linarith [pow_pos ht_gt_zero 2, ht_gt_zero]
have key_ne_zero : t ^ 2 + t + 1 ≠ 0 := ne_of_gt key_gt_zero
have h₂ : x ≠ 1 := by rw [hx_t]; field_simp; linarith [key_gt_zero]
have h₃ : y ≠ 1 := by rw [hy_t]; field_simp; linarith [key_gt_zero]
have h₄ : z ≠ 1 := by rw [hz_t]; linarith [key_gt_zero]
Expand Down
11 changes: 4 additions & 7 deletions Archive/Imo/Imo2008Q4.lean
Original file line number Diff line number Diff line change
Expand Up @@ -48,10 +48,8 @@ theorem imo2008_q4 (f : ℝ → ℝ) (H₁ : ∀ x > 0, f x > 0) :
rw [h w hw, h x hx, h (y ^ 2) (pow_pos hy 2), h (z ^ 2) (pow_pos hz 2)]
· intro w x y z hw hx hy hz hprod
rw [h w hw, h x hx, h (y ^ 2) (pow_pos hy 2), h (z ^ 2) (pow_pos hz 2)]
have hy2z2 : y ^ 2 + z ^ 2 ≠ 0 := ne_of_gt (add_pos (pow_pos hy 2) (pow_pos hz 2))
have hz2y2 : z ^ 2 + y ^ 2 ≠ 0 := ne_of_gt (add_pos (pow_pos hz 2) (pow_pos hy 2))
have hp2 : w ^ 2 * x ^ 2 = y ^ 2 * z ^ 2 := by linear_combination (w * x + y * z) * hprod
field_simp [ne_of_gt hw, ne_of_gt hx, ne_of_gt hy, ne_of_gt hz, hy2z2, hz2y2, hp2]
field_simp [hp2]
ring
-- proof that the only solutions are f(x) = x or f(x) = 1/x
intro H₂
Expand All @@ -66,7 +64,6 @@ theorem imo2008_q4 (f : ℝ → ℝ) (H₁ : ∀ x > 0, f x > 0) :
have h1xss : 1 * x = sqrt x * sqrt x := by rw [one_mul, mul_self_sqrt (le_of_lt hx)]
specialize H₂ 1 x (sqrt x) (sqrt x) zero_lt_one hx (sqrt_pos.mpr hx) (sqrt_pos.mpr hx) h1xss
rw [h₁, one_pow 2, sq_sqrt (le_of_lt hx), ← two_mul (f x), ← two_mul x] at H₂
have hx_ne_0 : x ≠ 0 := ne_of_gt hx
have hfx_ne_0 : f x ≠ 0 := by specialize H₁ x hx; exact ne_of_gt H₁
field_simp at H₂ ⊢
linear_combination 1 / 2 * H₂
Expand All @@ -82,12 +79,12 @@ theorem imo2008_q4 (f : ℝ → ℝ) (H₁ : ∀ x > 0, f x > 0) :
specialize H₂ a b (sqrt (a * b)) (sqrt (a * b)) ha hb (sqrt_pos.mpr hab) (sqrt_pos.mpr hab) habss
rw [sq_sqrt (le_of_lt hab), ← two_mul (f (a * b)), ← two_mul (a * b)] at H₂
rw [hfa₂, hfb₂] at H₂
have h2ab_ne_0 : 2 * (a * b) ≠ 0 := mul_ne_zero two_ne_zero (ne_of_gt hab)
have h2ab_ne_0 : 2 * (a * b) ≠ 0 := by positivity
specialize h₃ (a * b) hab
cases' h₃ with hab₁ hab₂
-- f(ab) = ab → b^4 = 1 → b = 1 → f(b) = b → false
· field_simp [hab₁] at H₂
field_simp [ne_of_gt hb] at H₂
· rw [ hab₁, div_left_inj' h2ab_ne_0 ] at H₂
field_simp at H₂
have hb₁ : b ^ 4 = 1 := by linear_combination -H₂
obtain hb₂ := abs_eq_one_of_pow_eq_one b 4 (show 4 ≠ 0 by norm_num) hb₁
rw [abs_of_pos hb] at hb₂; rw [hb₂] at hfb₁; exact hfb₁ h₁
Expand Down
6 changes: 2 additions & 4 deletions Archive/Imo/Imo2013Q1.lean
Original file line number Diff line number Diff line change
Expand Up @@ -67,12 +67,11 @@ theorem imo2013_q1 (n : ℕ+) (k : ℕ) :
use m
have hmpk : (m pk : ℚ) = 2 * t + 2 ^ pk.succ := by
have : m pk = ⟨2 * t + 2 ^ pk.succ, _⟩ := if_neg (irrefl pk); simp [this]
have denom_ne_zero : (2 * (t : ℚ) + 2 * 2 ^ pk) ≠ 0 := by positivity
calc
((1 : ℚ) + (2 ^ pk.succ - 1) / (n : ℚ) : ℚ)= 1 + (2 * 2 ^ pk - 1) / (2 * (t + 1) : ℕ) := by
rw [ht, pow_succ]
_ = (1 + 1 / (2 * t + 2 * 2 ^ pk)) * (1 + (2 ^ pk - 1) / (↑t + 1)) := by
field_simp [t.cast_add_one_ne_zero]
field_simp
ring
_ = (1 + 1 / (2 * t + 2 ^ pk.succ)) * (1 + (2 ^ pk - 1) / t_succ) := by
-- porting note: used to work with `norm_cast`
Expand All @@ -90,12 +89,11 @@ theorem imo2013_q1 (n : ℕ+) (k : ℕ) :
have hmpk : (m pk : ℚ) = 2 * t + 1 := by
have : m pk = ⟨2 * t + 1, _⟩ := if_neg (irrefl pk)
simp [this]
have denom_ne_zero : 2 * (t : ℚ) + 1 ≠ 0 := by norm_cast; apply (2 * t).succ_ne_zero
calc
((1 : ℚ) + (2 ^ pk.succ - 1) / ↑n : ℚ) = 1 + (2 * 2 ^ pk - 1) / (2 * t + 1 : ℕ) := by
rw [ht, pow_succ]
_ = (1 + 1 / (2 * t + 1)) * (1 + (2 ^ pk - 1) / (t + 1)) := by
field_simp [t.cast_add_one_ne_zero]
field_simp
ring
_ = (1 + 1 / (2 * t + 1)) * (1 + (2 ^ pk - 1) / t_succ) := by norm_cast
_ = (∏ i in Finset.range pk, (1 + 1 / (m i : ℚ))) * (1 + 1 / ↑(m pk)) := by
Expand Down
2 changes: 1 addition & 1 deletion Archive/Imo/Imo2013Q5.lean
Original file line number Diff line number Diff line change
Expand Up @@ -60,7 +60,7 @@ theorem le_of_all_pow_lt_succ {x y : ℝ} (hx : 1 < x) (hy : 1 < y)
have hNp : 0 < N := by exact_mod_cast (one_div_pos.mpr hxmy).trans hN
have :=
calc
1 = (x - y) * (1 / (x - y)) := by field_simp [ne_of_gt hxmy]
1 = (x - y) * (1 / (x - y)) := by field_simp
_ < (x - y) * N := by gcongr
_ ≤ x ^ N - y ^ N := hn N hNp
linarith [h N hNp]
Expand Down
12 changes: 6 additions & 6 deletions Archive/Wiedijk100Theorems/AreaOfACircle.lean
Original file line number Diff line number Diff line change
Expand Up @@ -111,13 +111,13 @@ theorem area_disc : volume (disc r) = NNReal.pi * r ^ 2 := by
((hasDerivAt_const x (r : ℝ)⁻¹).mul (hasDerivAt_id' x)))).add
((hasDerivAt_id' x).mul ((((hasDerivAt_id' x).pow 2).const_sub ((r : ℝ) ^ 2)).sqrt _))
using 1
· have h : sqrt ((1 : ℝ) - x ^ 2 / (r : ℝ) ^ 2) * r = sqrt ((r : ℝ) ^ 2 - x ^ 2) := by
rw [← sqrt_sq hle, ← sqrt_mul, sub_mul, sqrt_sq hle, mul_comm_div,
div_self (pow_ne_zero 2 hlt.ne'), one_mul, mul_one]
simpa [sqrt_sq hle, div_le_one (pow_pos hlt 2)] using sq_le_sq' hx1.le hx2.le
· have h₁ : (r:ℝ) ^ 2 - x ^ 2 > 0 := sub_pos_of_lt (sq_lt_sq' hx1 hx2)
have h : sqrt ((r:ℝ) ^ 2 - x ^ 2) ^ 3 = ((r:ℝ) ^ 2 - x ^ 2) * sqrt ((r: ℝ) ^ 2 - x ^ 2) := by
rw [pow_three, ← mul_assoc, mul_self_sqrt (by positivity)]
field_simp
rw [h, mul_left_comm, ← sq, neg_mul_eq_mul_neg, mul_div_mul_left (-x ^ 2) _ two_ne_zero,
add_left_comm, div_add_div_same, ← sub_eq_add_neg, div_sqrt, two_mul]
ring_nf
rw [h]
ring
· suffices -(1 : ℝ) < (r : ℝ)⁻¹ * x by exact this.ne'
calc
-(1 : ℝ) = (r : ℝ)⁻¹ * -r := by simp [inv_mul_cancel hlt.ne']
Expand Down
2 changes: 1 addition & 1 deletion Archive/Wiedijk100Theorems/InverseTriangleSum.lean
Original file line number Diff line number Diff line change
Expand Up @@ -35,6 +35,6 @@ theorem Theorem100.inverse_triangle_sum :
simp_rw [if_neg (Nat.succ_ne_zero _), Nat.succ_eq_add_one]
have A : (n + 1 + 1 : ℚ) ≠ 0 := by norm_cast; norm_num
push_cast
field_simp [Nat.cast_add_one_ne_zero]
field_simp
ring
#align theorem_100.inverse_triangle_sum Theorem100.inverse_triangle_sum
4 changes: 2 additions & 2 deletions Mathlib/Algebra/Order/ToIntervalMod.lean
Original file line number Diff line number Diff line change
Expand Up @@ -1015,7 +1015,7 @@ theorem toIcoDiv_zero_one (b : α) : toIcoDiv (zero_lt_one' α) 0 b = ⌊b⌋ :=
theorem toIcoMod_eq_add_fract_mul (a b : α) :
toIcoMod hp a b = a + Int.fract ((b - a) / p) * p := by
rw [toIcoMod, toIcoDiv_eq_floor, Int.fract]
field_simp [hp.ne.symm]
field_simp
ring
#align to_Ico_mod_eq_add_fract_mul toIcoMod_eq_add_fract_mul

Expand All @@ -1026,7 +1026,7 @@ theorem toIcoMod_eq_fract_mul (b : α) : toIcoMod hp 0 b = Int.fract (b / p) * p
theorem toIocMod_eq_sub_fract_mul (a b : α) :
toIocMod hp a b = a + p - Int.fract ((a + p - b) / p) * p := by
rw [toIocMod, toIocDiv_eq_neg_floor, Int.fract]
field_simp [hp.ne.symm]
field_simp
ring
#align to_Ioc_mod_eq_sub_fract_mul toIocMod_eq_sub_fract_mul

Expand Down
2 changes: 1 addition & 1 deletion Mathlib/Algebra/QuadraticDiscriminant.lean
Original file line number Diff line number Diff line change
Expand Up @@ -134,7 +134,7 @@ theorem discrim_le_zero (h : ∀ x : K, 0 ≤ a * x * x + b * x + c) : discrim a
-- if a > 0
· have ha' : 0 ≤ 4 * a := mul_nonneg zero_le_four ha.le
convert neg_nonpos.2 (mul_nonneg ha' (h (-b / (2 * a)))) using 1
field_simp [ha.ne']
field_simp
ring
#align discrim_le_zero discrim_le_zero

Expand Down
6 changes: 3 additions & 3 deletions Mathlib/Analysis/Analytic/Basic.lean
Original file line number Diff line number Diff line change
Expand Up @@ -202,7 +202,7 @@ theorem isLittleO_of_lt_radius (h : ↑r < p.radius) :
refine' ⟨_, rt, C, Or.inr zero_lt_one, fun n => _⟩
calc
|‖p n‖ * (r : ℝ) ^ n| = ‖p n‖ * (t : ℝ) ^ n * (r / t : ℝ) ^ n := by
field_simp [mul_right_comm, abs_mul, this.ne']
field_simp [mul_right_comm, abs_mul]
_ ≤ C * (r / t : ℝ) ^ n := by gcongr; apply hC
#align formal_multilinear_series.is_o_of_lt_radius FormalMultilinearSeries.isLittleO_of_lt_radius

Expand Down Expand Up @@ -670,7 +670,7 @@ theorem HasFPowerSeriesOnBall.uniform_geometric_approx' {r' : ℝ≥0}
calc
‖(p n) fun _ : Fin n => y‖
_ ≤ ‖p n‖ * ∏ _i : Fin n, ‖y‖ := ContinuousMultilinearMap.le_op_norm _ _
_ = ‖p n‖ * (r' : ℝ) ^ n * (‖y‖ / r') ^ n := by field_simp [hr'0.ne', mul_right_comm]
_ = ‖p n‖ * (r' : ℝ) ^ n * (‖y‖ / r') ^ n := by field_simp [mul_right_comm]
_ ≤ C * a ^ n * (‖y‖ / r') ^ n := by gcongr ?_ * _; apply hp
_ ≤ C * (a * (‖y‖ / r')) ^ n := by rw [mul_pow, mul_assoc]
#align has_fpower_series_on_ball.uniform_geometric_approx' HasFPowerSeriesOnBall.uniform_geometric_approx'
Expand Down Expand Up @@ -758,7 +758,7 @@ theorem HasFPowerSeriesOnBall.isBigO_image_sub_image_sub_deriv_principal
_ = B n := by
-- porting note: in the original, `B` was in the `field_simp`, but now Lean does not
-- accept it. The current proof works in Lean 4, but does not in Lean 3.
field_simp [pow_succ, hr'0.ne']
field_simp [pow_succ]
simp only [mul_assoc, mul_comm, mul_left_comm]
have hBL : HasSum B (L y) := by
apply HasSum.mul_left
Expand Down
2 changes: 1 addition & 1 deletion Mathlib/Analysis/BoxIntegral/Basic.lean
Original file line number Diff line number Diff line change
Expand Up @@ -603,7 +603,7 @@ theorem dist_integralSum_sum_integral_le_of_memBaseSet_of_iUnion_eq (h : Integra
dist (∑ J in π₀.boxes, integralSum f vol (πi J)) (∑ J in π₀.boxes, integral J l f vol) :=
dist_triangle _ _ _
_ ≤ ε + δ' + ∑ _J in π₀.boxes, δ' := (add_le_add this (dist_sum_sum_le_of_le _ hπiδ'))
_ = ε + δ := by field_simp [H0.ne']; ring
_ = ε + δ := by field_simp; ring
#align box_integral.integrable.dist_integral_sum_sum_integral_le_of_mem_base_set_of_Union_eq BoxIntegral.Integrable.dist_integralSum_sum_integral_le_of_memBaseSet_of_iUnion_eq

/-- **Henstock-Sacks inequality**. Let `r : ℝⁿ → (0, ∞)` be a function such that for any tagged
Expand Down
10 changes: 4 additions & 6 deletions Mathlib/Analysis/Calculus/BumpFunction/FiniteDimension.lean
Original file line number Diff line number Diff line change
Expand Up @@ -139,7 +139,6 @@ theorem IsOpen.exists_smooth_support_eq {s : Set E} (hs : IsOpen s) :
exact ⟨R, fun x => hR (mem_range_self _)⟩
choose R hR using this
let M := max (((Finset.range (n + 1)).image R).max' (by simp)) 1
have M_pos : 0 < M := zero_lt_one.trans_le (le_max_right _ _)
have δnpos : 0 < δ n := δpos n
have IR : ∀ i ≤ n, R i ≤ M := by
intro i hi
Expand All @@ -157,7 +156,7 @@ theorem IsOpen.exists_smooth_support_eq {s : Set E} (hs : IsOpen s) :
_ = M⁻¹ * δ n * ‖iteratedFDeriv ℝ i (g n) x‖ := by
rw [norm_smul, Real.norm_of_nonneg]; positivity
_ ≤ M⁻¹ * δ n * M := (mul_le_mul_of_nonneg_left ((hR i x).trans (IR i hi)) (by positivity))
_ = δ n := by field_simp [M_pos.ne']
_ = δ n := by field_simp
choose r rpos hr using this
have S : ∀ x, Summable fun n => (r n • g n) x := by
intro x
Expand Down Expand Up @@ -328,7 +327,7 @@ variable (E)
theorem w_integral {D : ℝ} (Dpos : 0 < D) : ∫ x : E, w D x ∂μ = 1 := by
simp_rw [w, integral_smul]
rw [integral_comp_inv_smul_of_nonneg μ (u : E → ℝ) Dpos.le, abs_of_nonneg Dpos.le, mul_comm]
field_simp [Dpos.ne', (u_int_pos E).ne']
field_simp [(u_int_pos E).ne']
#align exists_cont_diff_bump_base.W_integral ExistsContDiffBumpBase.w_integral

theorem w_support {D : ℝ} (Dpos : 0 < D) : support (w D : E → ℝ) = ball 0 D := by
Expand Down Expand Up @@ -557,16 +556,15 @@ instance (priority := 100) {E : Type*} [NormedAddCommGroup E] [NormedSpace ℝ E
calc
2 / (R + 1) * ‖x‖ ≤ 2 / (R + 1) * 1 :=
mul_le_mul_of_nonneg_left hx (div_nonneg zero_le_two A.le)
_ = 1 - (R - 1) / (R + 1) := by field_simp [A.ne']; ring
_ = 1 - (R - 1) / (R + 1) := by field_simp; ring
support := fun R hR => by
have A : 0 < (R + 1) / 2 := by linarith
have A' : 0 < R + 1 := by linarith
have C : (R - 1) / (R + 1) < 1 := by apply (div_lt_one _).2 <;> linarith
simp only [hR, if_true, support_comp_inv_smul₀ A.ne', y_support _ (IR R hR) C,
_root_.smul_ball A.ne', Real.norm_of_nonneg A.le, smul_zero]
refine' congr (congr_arg ball (Eq.refl 0)) _
field_simp [A'.ne']
ring }
field_simp; ring }

end ExistsContDiffBumpBase

Expand Down
21 changes: 4 additions & 17 deletions Mathlib/Analysis/Calculus/Taylor.lean
Original file line number Diff line number Diff line change
Expand Up @@ -162,15 +162,11 @@ theorem hasDerivWithinAt_taylor_coeff_within {f : ℝ → E} {x y : ℝ} {k :
(-((k ! : ℝ)⁻¹ * (x - y) ^ k)) t y := by
-- Commuting the factors:
have : -((k ! : ℝ)⁻¹ * (x - y) ^ k) = ((k + 1 : ℝ) * k !)⁻¹ * (-(k + 1) * (x - y) ^ k) := by
field_simp [k.factorial_ne_zero]
-- Porting note: was `ring_nf`
rw [mul_div_mul_right, ← neg_add_rev, neg_mul, neg_div, mul_div_cancel_left]
· exact k.cast_add_one_ne_zero
· simp [k.factorial_ne_zero]
field_simp; ring
rw [this]
exact (monomial_has_deriv_aux y x _).hasDerivWithinAt.const_mul _
convert this.smul hf using 1
field_simp [Nat.cast_add_one_ne_zero k, Nat.factorial_ne_zero k]
field_simp
rw [neg_div, neg_smul, sub_eq_add_neg]
#align has_deriv_within_at_taylor_coeff_within hasDerivWithinAt_taylor_coeff_within

Expand Down Expand Up @@ -256,7 +252,7 @@ theorem taylor_mean_remainder {f : ℝ → ℝ} {g g' : ℝ → ℝ} {x x₀ :
simp only [taylorWithinEval_self] at h
rw [mul_comm, ← div_left_inj' (g'_ne y hy), mul_div_cancel _ (g'_ne y hy)] at h
rw [← h]
field_simp [g'_ne y hy, n.factorial_ne_zero]
field_simp [g'_ne y hy]
ring
#align taylor_mean_remainder taylor_mean_remainder

Expand Down Expand Up @@ -289,16 +285,7 @@ theorem taylor_mean_remainder_lagrange {f : ℝ → ℝ} {x x₀ : ℝ} {n : ℕ
use y, hy
simp only [sub_self, zero_pow', Ne.def, Nat.succ_ne_zero, not_false_iff, zero_sub, mul_neg] at h
rw [h, neg_div, ← div_neg, neg_mul, neg_neg]
field_simp
-- Porting note: was `ring`
conv_lhs =>
arg 2
rw [← mul_assoc, mul_comm]
rw [mul_assoc, mul_div_mul_left _ _ (xy_ne y hy)]
conv_lhs =>
arg 2
rw [mul_comm]
nth_rw 1 [mul_comm]
field_simp [xy_ne y hy]; ring
#align taylor_mean_remainder_lagrange taylor_mean_remainder_lagrange

/-- **Taylor's theorem** with the Cauchy form of the remainder.
Expand Down
2 changes: 1 addition & 1 deletion Mathlib/Analysis/Complex/LocallyUniformLimit.lean
Original file line number Diff line number Diff line change
Expand Up @@ -61,7 +61,7 @@ theorem norm_cderiv_le (hr : 0 < r) (hf : ∀ w ∈ sphere z r, ‖f w‖ ≤ M)
have h2 := circleIntegral.norm_integral_le_of_norm_le_const hr.le h1
simp only [cderiv, norm_smul]
refine' (mul_le_mul le_rfl h2 (norm_nonneg _) (norm_nonneg _)).trans (le_of_eq _)
field_simp [_root_.abs_of_nonneg Real.pi_pos.le, Real.pi_pos.ne.symm, hr.ne.symm]
field_simp [_root_.abs_of_nonneg Real.pi_pos.le]
ring
#align complex.norm_cderiv_le Complex.norm_cderiv_le

Expand Down
32 changes: 12 additions & 20 deletions Mathlib/Analysis/Convex/Slope.lean
Original file line number Diff line number Diff line change
Expand Up @@ -32,18 +32,14 @@ theorem ConvexOn.slope_mono_adjacent (hf : ConvexOn 𝕜 s f) {x y z : 𝕜} (hx
linarith
set a := (z - y) / (z - x)
set b := (y - x) / (z - x)
have hy : a • x + b • z = y := by
field_simp
rw [div_eq_iff] <;> [ring; linarith]
have hy : a • x + b • z = y := by field_simp; ring
have key :=
hf.2 hx hz (show 0 ≤ a by apply div_nonneg <;> linarith)
(show 0 ≤ b by apply div_nonneg <;> linarith)
(show a + b = 1 by
field_simp
rw [div_eq_iff] <;> [ring; linarith])
(show a + b = 1 by field_simp)
rw [hy] at key
replace key := mul_le_mul_of_nonneg_left key hxz.le
field_simp [hxy.ne', hyz.ne', hxz.ne', mul_comm (z - x) _] at key ⊢
field_simp [mul_comm (z - x) _] at key ⊢
rw [div_le_div_right]
· linarith
· nlinarith
Expand Down Expand Up @@ -72,17 +68,13 @@ theorem StrictConvexOn.slope_strict_mono_adjacent (hf : StrictConvexOn 𝕜 s f)
linarith
set a := (z - y) / (z - x)
set b := (y - x) / (z - x)
have hy : a • x + b • z = y := by
field_simp
rw [div_eq_iff] <;> [ring; linarith]
have hy : a • x + b • z = y := by field_simp; ring
have key :=
hf.2 hx hz hxz' (div_pos hyz hxz) (div_pos hxy hxz)
(show a + b = 1 by
field_simp
rw [div_eq_iff] <;> [ring; linarith])
(show a + b = 1 by field_simp)
rw [hy] at key
replace key := mul_lt_mul_of_pos_left key hxz
field_simp [hxy.ne', hyz.ne', hxz.ne', mul_comm (z - x) _] at key ⊢
field_simp [mul_comm (z - x) _] at key ⊢
rw [div_lt_div_right]
· linarith
· nlinarith
Expand Down Expand Up @@ -247,12 +239,12 @@ theorem ConvexOn.secant_mono_aux1 (hf : ConvexOn 𝕜 s f) {x y z : 𝕜} (hx :
_ ≤ (z - y) / (z - x) * f x + (y - x) / (z - x) * f z := hf.2 hx hz ha hb ?_
_ = ((z - y) * f x + (y - x) * f z) / (z - x) := ?_
· congr 1
field_simp [hxy'.ne', hyz'.ne', hxz'.ne']
field_simp
ring
· -- Porting note: this `show` wasn't needed in Lean 3
show (z - y) / (z - x) + (y - x) / (z - x) = 1
field_simp [hxy'.ne', hyz'.ne', hxz'.ne']
· field_simp [hxy'.ne', hyz'.ne', hxz'.ne']
field_simp
· field_simp
#align convex_on.secant_mono_aux1 ConvexOn.secant_mono_aux1

theorem ConvexOn.secant_mono_aux2 (hf : ConvexOn 𝕜 s f) {x y z : 𝕜} (hx : x ∈ s) (hz : z ∈ s)
Expand Down Expand Up @@ -297,12 +289,12 @@ theorem StrictConvexOn.secant_strict_mono_aux1 (hf : StrictConvexOn 𝕜 s f) {x
_ < (z - y) / (z - x) * f x + (y - x) / (z - x) * f z := (hf.2 hx hz (by linarith) ha hb ?_)
_ = ((z - y) * f x + (y - x) * f z) / (z - x) := ?_
· congr 1
field_simp [hxy'.ne', hyz'.ne', hxz'.ne']
field_simp
ring
· -- Porting note: this `show` wasn't needed in Lean 3
show (z - y) / (z - x) + (y - x) / (z - x) = 1
field_simp [hxy'.ne', hyz'.ne', hxz'.ne']
· field_simp [hxy'.ne', hyz'.ne', hxz'.ne']
field_simp
· field_simp
#align strict_convex_on.secant_strict_mono_aux1 StrictConvexOn.secant_strict_mono_aux1

theorem StrictConvexOn.secant_strict_mono_aux2 (hf : StrictConvexOn 𝕜 s f) {x y z : 𝕜} (hx : x ∈ s)
Expand Down
Loading
Loading