Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Merged by Bors] - feat: lemmas about images of intervals under order embeddings #9926

Closed
wants to merge 5 commits into from
Closed
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
52 changes: 42 additions & 10 deletions Mathlib/Data/Set/Intervals/OrdConnected.lean
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,7 @@ Copyright (c) 2020 Yury G. Kudryashov. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yury G. Kudryashov
-/
import Mathlib.Data.Set.Intervals.UnorderedInterval
import Mathlib.Data.Set.Intervals.OrderEmbedding
import Mathlib.Data.Set.Lattice
import Mathlib.Order.Antichain

Expand All @@ -21,8 +21,8 @@ In this file we prove that intersection of a family of `OrdConnected` sets is `O
that all standard intervals are `OrdConnected`.
-/

open Interval

open scoped Interval
open Set
open OrderDual (toDual ofDual)

namespace Set
Expand Down Expand Up @@ -78,28 +78,60 @@ protected theorem Icc_subset (s : Set α) [hs : OrdConnected s] {x y} (hx : x
hs.out hx hy
#align set.Icc_subset Set.Icc_subset

end Preorder

end Set

namespace OrderEmbedding

variable {α β : Type*} [Preorder α] [Preorder β]

theorem image_Icc (e : α ↪o β) (he : OrdConnected (range e)) (x y : α) :
e '' Icc x y = Icc (e x) (e y) := by
rw [← e.preimage_Icc, image_preimage_eq_inter_range, inter_eq_left.2 (he.out ⟨_, rfl⟩ ⟨_, rfl⟩)]

theorem image_Ico (e : α ↪o β) (he : OrdConnected (range e)) (x y : α) :
e '' Ico x y = Ico (e x) (e y) := by
rw [← e.preimage_Ico, image_preimage_eq_inter_range,
inter_eq_left.2 <| Ico_subset_Icc_self.trans <| he.out ⟨_, rfl⟩ ⟨_, rfl⟩]

theorem image_Ioc (e : α ↪o β) (he : OrdConnected (range e)) (x y : α) :
e '' Ioc x y = Ioc (e x) (e y) := by
rw [← e.preimage_Ioc, image_preimage_eq_inter_range,
inter_eq_left.2 <| Ioc_subset_Icc_self.trans <| he.out ⟨_, rfl⟩ ⟨_, rfl⟩]

theorem image_Ioo (e : α ↪o β) (he : OrdConnected (range e)) (x y : α) :
e '' Ioo x y = Ioo (e x) (e y) := by
rw [← e.preimage_Ioo, image_preimage_eq_inter_range,
inter_eq_left.2 <| Ioo_subset_Icc_self.trans <| he.out ⟨_, rfl⟩ ⟨_, rfl⟩]

end OrderEmbedding

namespace Set

section Preorder

variable {α β : Type*} [Preorder α] [Preorder β] {s t : Set α}

@[simp]
lemma image_subtype_val_Icc {s : Set α} [OrdConnected s] (x y : s) :
Subtype.val '' Icc x y = Icc x.1 y :=
(Subtype.image_preimage_val s (Icc x.1 y)).trans <| inter_eq_left.2 <| s.Icc_subset x.2 y.2
(OrderEmbedding.subtype (· ∈ s)).image_Icc (by simpa) x y

@[simp]
lemma image_subtype_val_Ico {s : Set α} [OrdConnected s] (x y : s) :
Subtype.val '' Ico x y = Ico x.1 y :=
(Subtype.image_preimage_val s (Ico x.1 y)).trans <| inter_eq_left.2 <|
Ico_subset_Icc_self.trans <| s.Icc_subset x.2 y.2
(OrderEmbedding.subtype (· ∈ s)).image_Ico (by simpa) x y

@[simp]
lemma image_subtype_val_Ioc {s : Set α} [OrdConnected s] (x y : s) :
Subtype.val '' Ioc x y = Ioc x.1 y :=
(Subtype.image_preimage_val s (Ioc x.1 y)).trans <| inter_eq_left.2 <|
Ioc_subset_Icc_self.trans <| s.Icc_subset x.2 y.2
(OrderEmbedding.subtype (· ∈ s)).image_Ioc (by simpa) x y

@[simp]
lemma image_subtype_val_Ioo {s : Set α} [OrdConnected s] (x y : s) :
Subtype.val '' Ioo x y = Ioo x.1 y :=
(Subtype.image_preimage_val s (Ioo x.1 y)).trans <| inter_eq_left.2 <|
Ioo_subset_Icc_self.trans <| s.Icc_subset x.2 y.2
(OrderEmbedding.subtype (· ∈ s)).image_Ioo (by simpa) x y

theorem OrdConnected.inter {s t : Set α} (hs : OrdConnected s) (ht : OrdConnected t) :
OrdConnected (s ∩ t) :=
Expand Down
Loading