Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
54 changes: 30 additions & 24 deletions ggml_extend.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -483,12 +483,15 @@ __STATIC_INLINE__ void ggml_split_tensor_2d(struct ggml_tensor* input,
int64_t width = output->ne[0];
int64_t height = output->ne[1];
int64_t channels = output->ne[2];
int64_t ne3 = output->ne[3];
GGML_ASSERT(input->type == GGML_TYPE_F32 && output->type == GGML_TYPE_F32);
for (int iy = 0; iy < height; iy++) {
for (int ix = 0; ix < width; ix++) {
for (int k = 0; k < channels; k++) {
float value = ggml_tensor_get_f32(input, ix + x, iy + y, k);
ggml_tensor_set_f32(output, value, ix, iy, k);
for (int l = 0; l < ne3; l++) {
float value = ggml_tensor_get_f32(input, ix + x, iy + y, k, l);
ggml_tensor_set_f32(output, value, ix, iy, k, l);
}
}
}
}
Expand All @@ -511,6 +514,7 @@ __STATIC_INLINE__ void ggml_merge_tensor_2d(struct ggml_tensor* input,
int64_t width = input->ne[0];
int64_t height = input->ne[1];
int64_t channels = input->ne[2];
int64_t ne3 = input->ne[3];

int64_t img_width = output->ne[0];
int64_t img_height = output->ne[1];
Expand All @@ -519,24 +523,26 @@ __STATIC_INLINE__ void ggml_merge_tensor_2d(struct ggml_tensor* input,
for (int iy = y_skip; iy < height; iy++) {
for (int ix = x_skip; ix < width; ix++) {
for (int k = 0; k < channels; k++) {
float new_value = ggml_tensor_get_f32(input, ix, iy, k);
if (overlap_x > 0 || overlap_y > 0) { // blend colors in overlapped area
float old_value = ggml_tensor_get_f32(output, x + ix, y + iy, k);

const float x_f_0 = (overlap_x > 0 && x > 0) ? (ix - x_skip) / float(overlap_x) : 1;
const float x_f_1 = (overlap_x > 0 && x < (img_width - width)) ? (width - ix) / float(overlap_x) : 1;
const float y_f_0 = (overlap_y > 0 && y > 0) ? (iy - y_skip) / float(overlap_y) : 1;
const float y_f_1 = (overlap_y > 0 && y < (img_height - height)) ? (height - iy) / float(overlap_y) : 1;

const float x_f = std::min(std::min(x_f_0, x_f_1), 1.f);
const float y_f = std::min(std::min(y_f_0, y_f_1), 1.f);

ggml_tensor_set_f32(
output,
old_value + new_value * ggml_smootherstep_f32(y_f) * ggml_smootherstep_f32(x_f),
x + ix, y + iy, k);
} else {
ggml_tensor_set_f32(output, new_value, x + ix, y + iy, k);
for (int l = 0; l < ne3; l++) {
float new_value = ggml_tensor_get_f32(input, ix, iy, k, l);
if (overlap_x > 0 || overlap_y > 0) { // blend colors in overlapped area
float old_value = ggml_tensor_get_f32(output, x + ix, y + iy, k, l);

const float x_f_0 = (overlap_x > 0 && x > 0) ? (ix - x_skip) / float(overlap_x) : 1;
const float x_f_1 = (overlap_x > 0 && x < (img_width - width)) ? (width - ix) / float(overlap_x) : 1;
const float y_f_0 = (overlap_y > 0 && y > 0) ? (iy - y_skip) / float(overlap_y) : 1;
const float y_f_1 = (overlap_y > 0 && y < (img_height - height)) ? (height - iy) / float(overlap_y) : 1;

const float x_f = std::min(std::min(x_f_0, x_f_1), 1.f);
const float y_f = std::min(std::min(y_f_0, y_f_1), 1.f);

ggml_tensor_set_f32(
output,
old_value + new_value * ggml_smootherstep_f32(y_f) * ggml_smootherstep_f32(x_f),
x + ix, y + iy, k, l);
} else {
ggml_tensor_set_f32(output, new_value, x + ix, y + iy, k, l);
}
}
}
}
Expand Down Expand Up @@ -852,8 +858,8 @@ __STATIC_INLINE__ void sd_tiling_non_square(ggml_tensor* input,
}

struct ggml_init_params params = {};
params.mem_size += input_tile_size_x * input_tile_size_y * input->ne[2] * sizeof(float); // input chunk
params.mem_size += output_tile_size_x * output_tile_size_y * output->ne[2] * sizeof(float); // output chunk
params.mem_size += input_tile_size_x * input_tile_size_y * input->ne[2] * input->ne[3] * sizeof(float); // input chunk
params.mem_size += output_tile_size_x * output_tile_size_y * output->ne[2] * output->ne[3] * sizeof(float); // output chunk
params.mem_size += 3 * ggml_tensor_overhead();
params.mem_buffer = NULL;
params.no_alloc = false;
Expand All @@ -868,8 +874,8 @@ __STATIC_INLINE__ void sd_tiling_non_square(ggml_tensor* input,
}

// tiling
ggml_tensor* input_tile = ggml_new_tensor_4d(tiles_ctx, GGML_TYPE_F32, input_tile_size_x, input_tile_size_y, input->ne[2], 1);
ggml_tensor* output_tile = ggml_new_tensor_4d(tiles_ctx, GGML_TYPE_F32, output_tile_size_x, output_tile_size_y, output->ne[2], 1);
ggml_tensor* input_tile = ggml_new_tensor_4d(tiles_ctx, GGML_TYPE_F32, input_tile_size_x, input_tile_size_y, input->ne[2], input->ne[3]);
ggml_tensor* output_tile = ggml_new_tensor_4d(tiles_ctx, GGML_TYPE_F32, output_tile_size_x, output_tile_size_y, output->ne[2], output->ne[3]);
int num_tiles = num_tiles_x * num_tiles_y;
LOG_INFO("processing %i tiles", num_tiles);
pretty_progress(0, num_tiles, 0.0f);
Expand Down
15 changes: 12 additions & 3 deletions stable-diffusion.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -1440,10 +1440,19 @@ class StableDiffusionGGML {
if (vae_tiling_params.enabled && !encode_video) {
// TODO wan2.2 vae support?
int C = sd_version_is_dit(version) ? 16 : 4;
if (!use_tiny_autoencoder) {
C *= 2;
int ne2;
int ne3;
if (sd_version_is_qwen_image(version)) {
ne2 = 1;
ne3 = C*x->ne[3];
} else {
if (!use_tiny_autoencoder) {
C *= 2;
}
ne2 = C;
ne3 = x->ne[3];
}
result = ggml_new_tensor_4d(work_ctx, GGML_TYPE_F32, W, H, C, x->ne[3]);
result = ggml_new_tensor_4d(work_ctx, GGML_TYPE_F32, W, H, ne2, ne3);
}

if (sd_version_is_qwen_image(version)) {
Expand Down
Loading