Skip to content

leimao/PyTorch-Variational-Autoencoder

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

13 Commits
 
 
 
 
 
 
 
 

Repository files navigation

PyTorch Variational Autoencoder

Introduction

PyTorch variational autoencoder (VAE) example for MNIST dataset. The modeled posterior distribution follows a Gaussian distribution with a full covariance matrix.

Usages

Build Docker Image

$ docker build -f docker/pytorch.Dockerfile --no-cache --tag=pytorch:2.2.0 .

Run Docker Container

$ docker run -it --rm --gpus device=0 --ipc=host --ulimit memlock=-1 --ulimit stack=67108864 -v $(pwd):/mnt pytorch:2.2.0

Run Variational Autoencoder MNIST Training

$ python train.py

Examine Results

The results will be saved to the results directory.

References

About

PyTorch Variational Autoencoder Example

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published