Skip to content

End-to-end ASR/LM implementation with PyTorch

License

Notifications You must be signed in to change notification settings

lfgogogo/neural_sp

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Build Status codecov

NeuralSP: Neural network based Speech Processing

How to install

# Set path to CUDA, NCCL
CUDAROOT=/usr/local/cuda
NCCL_ROOT=/usr/local/nccl

export CPATH=$NCCL_ROOT/include:$CPATH
export LD_LIBRARY_PATH=$NCCL_ROOT/lib/:$CUDAROOT/lib64:$LD_LIBRARY_PATH
export LIBRARY_PATH=$NCCL_ROOT/lib/:$LIBRARY_PATH
export CUDA_HOME=$CUDAROOT
export CUDA_PATH=$CUDAROOT
export CPATH=$CUDA_PATH/include:$CPATH  # for warp-rnnt

# Install miniconda, python libraries, and other tools
cd tools
make KALDI=/path/to/kaldi

Key features

Corpus

  • ASR

    • AISHELL-1
    • CSJ
    • Librispeech
    • Switchboard (+ Fisher)
    • TEDLIUM2/TEDLIUM3
    • TIMIT
    • WSJ
  • LM

    • Penn Tree Bank
    • WikiText2

Front-end

  • Frame stacking
  • Sequence summary network [link]
  • SpecAugment [link]
  • Adaptive SpecAugment [link]

Encoder

  • RNN encoder
    • (CNN-)BLSTM, (CNN-)LSTM, (CNN-)BLGRU, (CNN-)LGRU
    • Latency-controlled BRNN [link]
    • Random state passing (RSP) [link]
  • Transformer encoder [link]
    • Chunk hopping mechanism [link]
    • Relative positional encoding [link]
    • Causal mask
  • Conformer encoder [link]
  • Time-depth separable (TDS) convolution encoder [link] [line]
  • Gated CNN encoder (GLU) [link]

Connectionist Temporal Classification (CTC) decoder

  • Beam search
  • Shallow fusion
  • Forced alignment

RNN-Transducer (RNN-T) decoder [link]

  • Beam search
  • Shallow fusion

Attention-based decoder

  • RNN decoder
    • Shallow fusion
    • Cold fusion [link]
    • Deep fusion [link]
    • Forward-backward attention decoding [link]
    • Ensemble decoding
  • Attention type
    • location-based
    • content-based
    • dot-product
    • GMM attention
  • Streaming RNN decoder specific
    • Hard monotonic attention [link]
    • Monotonic chunkwise attention (MoChA) [link]
    • Delay constrained training (DeCoT) [link]
    • Minimum latency training (MinLT) [link]
    • CTC-synchronous training (CTC-ST) [link]
  • Transformer decoder [link]
  • Streaming Transformer decoder specific
    • Monotonic Multihead Attention [link] [link]

Language model (LM)

  • RNNLM (recurrent neural network language model)
  • Gated convolutional LM [link]
  • Transformer LM
  • Transformer-XL LM [link]
  • Adaptive softmax [link]

Output units

  • Phoneme
  • Grapheme
  • Wordpiece (BPE, sentencepiece)
  • Word
  • Word-char mix

Multi-task learning (MTL)

Multi-task learning (MTL) with different units are supported to alleviate data sparseness.

  • Hybrid CTC/attention [link]
  • Hierarchical Attention (e.g., word attention + character attention) [link]
  • Hierarchical CTC (e.g., word CTC + character CTC) [link]
  • Hierarchical CTC+Attention (e.g., word attention + character CTC) [link]
  • Forward-backward attention [link]
  • LM objective

ASR Performance

AISHELL-1 (CER)

Model dev test
Transformer 5.0 5.4
Conformer 4.7 5.2
Streaming MMA 5.5 6.1

CSJ (WER)

Model eval1 eval2 eval3
BLSTM LAS 6.5 5.1 5.6
LC-BLSTM MoChA 7.4 5.6 6.4

Switchboard 300h (WER)

Model SWB CH
BLSTM LAS 9.1 18.8

Switchboard+Fisher 2000h (WER)

Model SWB CH
BLSTM LAS 7.8 13.8

Librispeech (WER)

Model dev-clean dev-other test-clean test-other
BLSTM LAS 2.5 7.2 2.6 7.5
BLSTM RNN-T 2.9 8.5 3.2 9.0
Transformer 2.1 5.3 2.4 5.7
UniLSTM RNN-T 3.7 11.7 4.0 11.6
UniLSTM MoChA 4.1 11.0 4.2 11.2
LC-BLSTM RNN-T 3.3 9.8 3.5 10.2
LC-BLSTM MoChA 3.3 8.8 3.5 9.1
Streaming MMA 2.5 6.9 2.7 7.1

TEDLIUM2 (WER)

Model dev test
BLSTM LAS 8.6 8.1
LC-BLSTM MoChA 10.6 8.6
LC-BLSTM RNN-T 9.0 8.6

WSJ (WER)

Model test_dev93 test_eval92
BLSTM LAS 8.8 6.2

LM Performance

Penn Tree Bank (PPL)

Model valid test
RNNLM 87.99 86.06
+ cache=100 79.58 79.12
+ cache=500 77.36 76.94

WikiText2 (PPL)

Model valid test
RNNLM 104.53 98.73
+ cache=100 90.86 85.87
+ cache=2000 76.10 72.77

Reference

Dependency

About

End-to-end ASR/LM implementation with PyTorch

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 98.4%
  • Shell 1.1%
  • Makefile 0.5%