Team
Da dejus
@lhmlhm1111
@codenavy94
@dockjong
@Hail-cali
- how to train?
- we worked code based on shell command with python for faster hyper parameter tuning
- the major options you should input, are
-models
--y_feature
,--file
,--data_path
- for
-models
,-l
option is model list you want to train, it is mapped inside code with dict
python final_train.py -l xgb lgbm rf --data_path ./dataset --file train.csv --y_feature 장타
- hyper parameter tuning
python run_grid.py -l xgb lgbm rf --data_path ./dataset --file train.csv --y_feature 장타
- gird_search & inference
python run_grid_stack.py -l xgb lgbm rf --data_path ./dataset --file train.csv --y_feature 출루
- the major option for making dataset from raw is
ws
(windeow size) andagg
(aggregation rule |date | game|)
- we used stacking ensemble model