-
Notifications
You must be signed in to change notification settings - Fork 15.2k
[mlir][XeGPU][Transform] Add vectorlinearize transform pass. #158084
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
Merged
Changes from all commits
Commits
Show all changes
6 commits
Select commit
Hold shift + click to select a range
fc1656c
[XeGPU][Transform] Add vectorlinearize transform pass.
mshahneo 884a069
Address review comments.
mshahneo f12ddd0
Address review comments.
mshahneo 224d3be
Address review comments.
mshahneo b4f8cbf
Address review comments.
mshahneo 6b22d6d
Address review comments.
mshahneo File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
111 changes: 111 additions & 0 deletions
111
mlir/lib/Dialect/XeGPU/Transforms/XeGPUVectorLinearize.cpp
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,111 @@ | ||
//===-- XeGPUVectorLinearize.cpp - Linearizes n-D vectors to 1-D vectors --===// | ||
// | ||
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | ||
// See https://llvm.org/LICENSE.txt for license information. | ||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | ||
// | ||
//===----------------------------------------------------------------------===// | ||
|
||
#include "mlir/Dialect/SCF/IR/SCF.h" | ||
#include "mlir/Dialect/SCF/Transforms/Patterns.h" | ||
#include "mlir/Dialect/Vector/IR/VectorOps.h" | ||
#include "mlir/Dialect/Vector/Transforms/LoweringPatterns.h" | ||
#include "mlir/Dialect/Vector/Transforms/VectorRewritePatterns.h" | ||
#include "mlir/Dialect/XeGPU/IR/XeGPU.h" | ||
#include "mlir/Dialect/XeGPU/Transforms/Passes.h" | ||
#include "mlir/Pass/Pass.h" | ||
#include "mlir/Transforms/DialectConversion.h" | ||
#include "mlir/Transforms/GreedyPatternRewriteDriver.h" | ||
#include "llvm/Support/Debug.h" | ||
#include "llvm/Support/DebugLog.h" | ||
#include "llvm/Support/raw_ostream.h" | ||
|
||
#include <optional> | ||
|
||
namespace mlir { | ||
namespace xegpu { | ||
#define GEN_PASS_DEF_XEGPUVECTORLINEARIZE | ||
#include "mlir/Dialect/XeGPU/Transforms/Passes.h.inc" | ||
} // namespace xegpu | ||
} // namespace mlir | ||
|
||
#define DEBUG_TYPE "xegpu-vector-linearize" | ||
|
||
using namespace mlir; | ||
|
||
namespace { | ||
struct XeGPUVectorLinearizePass final | ||
: public xegpu::impl::XeGPUVectorLinearizeBase<XeGPUVectorLinearizePass> { | ||
void runOnOperation() override { | ||
// vector.broadcast and vector.gather requires progressive lowering | ||
{ | ||
RewritePatternSet patterns(&getContext()); | ||
vector::populateVectorBroadcastLoweringPatterns(patterns); | ||
vector::populateVectorGatherLoweringPatterns(patterns); | ||
vector::populateVectorGatherToConditionalLoadPatterns(patterns); | ||
// vector.transpose lowering | ||
// Shuffle16x16 will fallback to Shuffle1D for non 16x16 sizes. | ||
vector::populateVectorTransposeLoweringPatterns( | ||
patterns, vector::VectorTransposeLowering::Shuffle16x16); | ||
if (failed(applyPatternsGreedily(getOperation(), std::move(patterns)))) | ||
return signalPassFailure(); | ||
} | ||
|
||
// Unroll load/store from <d1xd2x...xdk> to (d1*d2*...*d(k-1)) slices of | ||
// <1x1x...x1xdk>. | ||
{ | ||
RewritePatternSet patterns(&getContext()); | ||
vector::UnrollVectorOptions vectorOptions; | ||
vectorOptions.setNativeShapeFn( | ||
[](Operation *op) -> std::optional<SmallVector<int64_t>> { | ||
auto extractVectorType = [](Operation *op) -> VectorType { | ||
if (auto loadOp = dyn_cast<vector::LoadOp>(op)) | ||
return loadOp.getVectorType(); | ||
if (auto storeOp = dyn_cast<vector::StoreOp>(op)) | ||
return storeOp.getVectorType(); | ||
return nullptr; | ||
}; | ||
|
||
VectorType vecType = extractVectorType(op); | ||
if (!vecType) | ||
return std::nullopt; | ||
|
||
// Only handle rank >= 2 so we actually unroll something. | ||
int64_t rank = vecType.getRank(); | ||
if (rank < 2) | ||
return std::nullopt; | ||
|
||
ArrayRef<int64_t> shape = vecType.getShape(); | ||
// Produce native shape: 1 x 1 x ... x (original last dim). | ||
SmallVector<int64_t> native(rank, 1); | ||
native.back() = shape.back(); | ||
return native; | ||
}); | ||
vector::populateVectorUnrollPatterns(patterns, vectorOptions); | ||
if (failed(applyPatternsGreedily(getOperation(), std::move(patterns)))) { | ||
LDBG() << "Unroll failed."; | ||
return signalPassFailure(); | ||
} | ||
} | ||
|
||
// Use vector linearization patterns | ||
{ | ||
MLIRContext &context = getContext(); | ||
TypeConverter converter; | ||
RewritePatternSet patterns(&context); | ||
ConversionTarget target(context); | ||
vector::populateForVectorLinearize(converter, target); | ||
vector::populateVectorLinearizeBasePatterns(converter, target, patterns); | ||
vector::populateVectorLinearizeShuffleLikeOpsPatterns(converter, target, | ||
patterns); | ||
scf::populateSCFStructuralTypeConversionsAndLegality(converter, patterns, | ||
target); | ||
if (failed(applyPartialConversion(getOperation(), target, | ||
std::move(patterns)))) { | ||
LDBG() << "Linearization failed."; | ||
return signalPassFailure(); | ||
} | ||
} | ||
} | ||
}; | ||
} // namespace |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,263 @@ | ||
// RUN: mlir-opt %s -split-input-file -xegpu-vector-linearize -canonicalize | FileCheck %s | ||
|
||
// CHECK-LABEL: test_vector_insert_2d_idx | ||
// CHECK-SAME: (%[[DEST:.*]]: vector<2x8x4xf32>, %[[SRC:.*]]: vector<4xf32>) -> vector<2x8x4xf32> | ||
// CHECK: %[[ARG_DEST:.*]] = vector.shape_cast %[[DEST]] : vector<2x8x4xf32> to vector<64xf32> | ||
// CHECK: %[[SHUFFLE:.*]] = vector.shuffle %[[ARG_DEST]], %[[SRC]] | ||
// CHECK: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 64, 65, 66, 67, 16, 17, 18, 19, 20, 21, | ||
// CHECK-SAME: 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, | ||
// CHECK-SAME: 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63] : vector<64xf32>, vector<4xf32> | ||
// CHECK: %[[RES:.*]] = vector.shape_cast %[[SHUFFLE]] : vector<64xf32> to vector<2x8x4xf32> | ||
// CHECK: return %[[RES]] : vector<2x8x4xf32> | ||
func.func @test_vector_insert_2d_idx(%arg0: vector<2x8x4xf32>, %arg1: vector<4xf32>) -> vector<2x8x4xf32> { | ||
%0 = vector.insert %arg1, %arg0[0, 3]: vector<4xf32> into vector<2x8x4xf32> | ||
return %0 : vector<2x8x4xf32> | ||
} | ||
|
||
// ----- | ||
// CHECK-LABEL: test_vector_transpose | ||
// CHECK-SAME: (%[[ORIG_ARG:.*]]: vector<2x8xf32>) -> vector<8x2xf32> | ||
// CHECK: %[[ARG:.*]] = vector.shape_cast %[[ORIG_ARG]] : vector<2x8xf32> to vector<16xf32> | ||
// CHECK: %[[SHUFFLE:.*]] = vector.shuffle %[[ARG]], %[[ARG]] | ||
// CHECK: [0, 8, 1, 9, 2, 10, 3, 11, 4, 12, 5, 13, 6, 14, 7, 15] : vector<16xf32>, vector<16xf32> | ||
// CHECK: %[[RES:.*]] = vector.shape_cast %[[SHUFFLE]] : vector<16xf32> to vector<8x2xf32> | ||
// CHECK: return %[[RES]] : vector<8x2xf32> | ||
func.func @test_vector_transpose(%arg: vector<2x8xf32>) -> vector<8x2xf32> { | ||
%0 = vector.transpose %arg, [1, 0] : vector<2x8xf32> to vector<8x2xf32> | ||
return %0 : vector<8x2xf32> | ||
} | ||
|
||
// ----- | ||
// CHECK-LABEL: test_vector_transpose_16x16 | ||
// CHECK: vector.shuffle {{.*}} [0, 16, 1, 17, 4, 20, 5, 21, 8, 24, 9, 25, 12, 28, 13, 29] : vector<16xf32>, vector<16xf32> | ||
adam-smnk marked this conversation as resolved.
Show resolved
Hide resolved
|
||
// CHECK: vector.shuffle {{.*}} [2, 18, 3, 19, 6, 22, 7, 23, 10, 26, 11, 27, 14, 30, 15, 31] : vector<16xf32>, vector<16xf32> | ||
// CHECK-62: vector.shuffle | ||
func.func @test_vector_transpose_16x16(%arg: vector<16x16xf32>) -> vector<16x16xf32> { | ||
%0 = vector.transpose %arg, [1, 0] : vector<16x16xf32> to vector<16x16xf32> | ||
return %0 : vector<16x16xf32> | ||
} | ||
|
||
// ----- | ||
|
||
// CHECK-LABEL: func.func @test_vector_store_load_4x4_f16 | ||
// CHECK-SAME: (%[[ARG0:.*]]: memref<4x4xf16>) | ||
// CHECK-DAG: %[[C3:.*]] = arith.constant 3 : index | ||
// CHECK-DAG: %[[C2:.*]] = arith.constant 2 : index | ||
// CHECK-DAG: %[[C1:.*]] = arith.constant 1 : index | ||
// CHECK-DAG: %[[C0:.*]] = arith.constant 0 : index | ||
// CHECK: %[[LOAD0:.*]] = vector.load %[[ARG0]][%[[C0]], %[[C0]]] : memref<4x4xf16>, vector<4xf16> | ||
// CHECK: %[[LOAD1:.*]] = vector.load %[[ARG0]][%[[C1]], %[[C0]]] : memref<4x4xf16>, vector<4xf16> | ||
// CHECK: %[[LOAD2:.*]] = vector.load %[[ARG0]][%[[C2]], %[[C0]]] : memref<4x4xf16>, vector<4xf16> | ||
// CHECK: %[[LOAD3:.*]] = vector.load %[[ARG0]][%[[C3]], %[[C0]]] : memref<4x4xf16>, vector<4xf16> | ||
// CHECK: vector.store %[[LOAD0]], %[[ARG0]][%[[C0]], %[[C0]]] : memref<4x4xf16>, vector<4xf16> | ||
// CHECK: vector.store %[[LOAD1]], %[[ARG0]][%[[C1]], %[[C0]]] : memref<4x4xf16>, vector<4xf16> | ||
// CHECK: vector.store %[[LOAD2]], %[[ARG0]][%[[C2]], %[[C0]]] : memref<4x4xf16>, vector<4xf16> | ||
// CHECK: vector.store %[[LOAD3]], %[[ARG0]][%[[C3]], %[[C0]]] : memref<4x4xf16>, vector<4xf16> | ||
func.func @test_vector_store_load_4x4_f16(%buffer: memref<4x4xf16>) { | ||
%c0 = arith.constant 0 : index | ||
%0 = vector.load %buffer[%c0, %c0] : memref<4x4xf16>, vector<4x4xf16> | ||
vector.store %0, %buffer[%c0, %c0] : memref<4x4xf16>, vector<4x4xf16> | ||
return | ||
} | ||
|
||
// ----- | ||
// CHECK-LABEL: func.func @test_vector_store_load_4x4x4 | ||
// CHECK-SAME: (%[[BUF:.*]]: memref<4x4x4xf32>) | ||
// Constants (order not important) | ||
// CHECK-DAG: %[[C0:.*]] = arith.constant 0 : index | ||
// CHECK-DAG: %[[C1:.*]] = arith.constant 1 : index | ||
// CHECK-DAG: %[[C2:.*]] = arith.constant 2 : index | ||
// CHECK-DAG: %[[C3:.*]] = arith.constant 3 : index | ||
// All 16 scalar-slice (row/col plane) loads of 1D vectors | ||
// CHECK-COUNT-16: vector.load {{.*}} : memref<4x4x4xf32>, vector<4xf32> | ||
// No remaining 3D vector load | ||
// CHECK-NOT: vector.load {{.*}} : memref<4x4x4xf32>, vector<4x4x4xf32> | ||
// All 16 stores of 1D vectors | ||
// CHECK-COUNT-16: vector.store {{.*}} : memref<4x4x4xf32>, vector<4xf32> | ||
// CHECK: return | ||
func.func @test_vector_store_load_4x4x4(%buffer: memref<4x4x4xf32>) { | ||
%c0 = arith.constant 0 : index | ||
%0 = vector.load %buffer[%c0, %c0, %c0] : memref<4x4x4xf32>, vector<4x4x4xf32> | ||
vector.store %0, %buffer[%c0, %c0, %c0] : memref<4x4x4xf32>, vector<4x4x4xf32> | ||
return | ||
} | ||
|
||
// ----- | ||
// CHECK-LABEL: func.func @test_linearize_index | ||
// CHECK-SAME: (%[[ARG0:.*]]: vector<2x2xindex>, %[[ARG1:.*]]: vector<2x2xi32>) -> vector<2x2xindex> | ||
// CHECK: %[[CST:.*]] = arith.constant dense<[0, 1, 2, 3]> : vector<4xindex> | ||
// CHECK: %[[CAST1:.*]] = vector.shape_cast %[[ARG1]] : vector<2x2xi32> to vector<4xi32> | ||
// CHECK: %[[CAST2:.*]] = vector.shape_cast %[[ARG0]] : vector<2x2xindex> to vector<4xindex> | ||
// CHECK: %[[ADDI:.*]] = arith.addi %[[CAST2]], %[[CST]] : vector<4xindex> | ||
// CHECK: %[[INDEX_CAST1:.*]] = arith.index_cast %[[ADDI]] : vector<4xindex> to vector<4xi32> | ||
// CHECK: %[[MULI:.*]] = arith.muli %[[INDEX_CAST1]], %[[CAST1]] : vector<4xi32> | ||
// CHECK: %[[INDEX_CAST2:.*]] = arith.index_cast %[[MULI]] : vector<4xi32> to vector<4xindex> | ||
// CHECK: %[[RESULT:.*]] = vector.shape_cast %[[INDEX_CAST2]] : vector<4xindex> to vector<2x2xindex> | ||
// CHECK: return %[[RESULT]] : vector<2x2xindex> | ||
func.func @test_linearize_index(%arg0: vector<2x2xindex>, %arg1: vector<2x2xi32>) -> vector<2x2xindex> { | ||
%0 = arith.constant dense<[[0, 1], [2, 3]]> : vector<2x2xindex> | ||
// Arith and math ops are handled in generic way, check some of them | ||
%1 = arith.addi %arg0, %0 : vector<2x2xindex> | ||
%2 = arith.index_cast %1 : vector<2x2xindex> to vector<2x2xi32> | ||
%3 = arith.muli %2, %arg1 : vector<2x2xi32> | ||
%4 = arith.index_cast %3 : vector<2x2xi32> to vector<2x2xindex> | ||
return %4 : vector<2x2xindex> | ||
} | ||
|
||
// ----- | ||
// CHECK-LABEL: func.func @broadcast_stretch_at_start | ||
// CHECK-SAME: (%[[ARG0:.*]]: vector<1x4xf32>) -> vector<3x4xf32> | ||
// CHECK: %[[POISON:.*]] = ub.poison : vector<12xf32> | ||
// CHECK: %[[CAST:.*]] = vector.shape_cast %[[ARG0]] : vector<1x4xf32> to vector<4xf32> | ||
// CHECK: %[[SHUFFLE1:.*]] = vector.shuffle %[[POISON]], %[[CAST]] [12, 13, 14, 15, 4, 5, 6, 7, 8, 9, 10, 11] : vector<12xf32>, vector<4xf32> | ||
// CHECK: %[[SHUFFLE2:.*]] = vector.shuffle %[[SHUFFLE1]], %[[CAST]] [0, 1, 2, 3, 12, 13, 14, 15, 8, 9, 10, 11] : vector<12xf32>, vector<4xf32> | ||
// CHECK: %[[SHUFFLE3:.*]] = vector.shuffle %[[SHUFFLE2]], %[[CAST]] [0, 1, 2, 3, 4, 5, 6, 7, 12, 13, 14, 15] : vector<12xf32>, vector<4xf32> | ||
// CHECK: %[[RESULT:.*]] = vector.shape_cast %[[SHUFFLE3]] : vector<12xf32> to vector<3x4xf32> | ||
func.func @broadcast_stretch_at_start(%arg0: vector<1x4xf32>) -> vector<3x4xf32> { | ||
%0 = vector.broadcast %arg0 : vector<1x4xf32> to vector<3x4xf32> | ||
return %0 : vector<3x4xf32> | ||
} | ||
|
||
// ----- | ||
// CHECK-LABEL: func.func @broadcast_stretch_at_end | ||
// CHECK-SAME: (%[[ARG0:.*]]: vector<4x1xf32>) -> vector<4x3xf32> | ||
// CHECK: %[[POISON:.*]] = ub.poison : vector<12xf32> | ||
// CHECK: %[[EXTRACT1:.*]] = vector.extract %[[ARG0]][0, 0] : f32 from vector<4x1xf32> | ||
// CHECK: %[[BROADCAST1:.*]] = vector.broadcast %[[EXTRACT1]] : f32 to vector<3xf32> | ||
// CHECK: vector.shuffle | ||
// CHECK: %[[EXTRACT2:.*]] = vector.extract %[[ARG0]][1, 0] : f32 from vector<4x1xf32> | ||
// CHECK: %[[BROADCAST2:.*]] = vector.broadcast %[[EXTRACT2]] : f32 to vector<3xf32> | ||
// CHECK: vector.shuffle | ||
// CHECK: %[[EXTRACT3:.*]] = vector.extract %[[ARG0]][2, 0] : f32 from vector<4x1xf32> | ||
// CHECK: %[[BROADCAST3:.*]] = vector.broadcast %[[EXTRACT3]] : f32 to vector<3xf32> | ||
// CHECK: vector.shuffle | ||
// CHECK: %[[EXTRACT4:.*]] = vector.extract %[[ARG0]][3, 0] : f32 from vector<4x1xf32> | ||
// CHECK: %[[BROADCAST4:.*]] = vector.broadcast %[[EXTRACT4]] : f32 to vector<3xf32> | ||
// CHECK: vector.shuffle | ||
// CHECK: vector.shape_cast {{.*}} : vector<12xf32> to vector<4x3xf32> | ||
func.func @broadcast_stretch_at_end(%arg0: vector<4x1xf32>) -> vector<4x3xf32> { | ||
%0 = vector.broadcast %arg0 : vector<4x1xf32> to vector<4x3xf32> | ||
return %0 : vector<4x3xf32> | ||
} | ||
|
||
// ----- | ||
// CHECK-LABEL: func.func @broadcast_stretch_in_middle | ||
// CHECK-SAME: (%[[ARG0:.*]]: vector<4x1x2xf32>) -> vector<4x3x2xf32> | ||
// CHECK: ub.poison : vector<6xf32> | ||
// CHECK: ub.poison : vector<24xf32> | ||
// CHECK: %[[CAST:.*]] = vector.shape_cast %[[ARG0]] : vector<4x1x2xf32> to vector<8xf32> | ||
// CHECK-COUNT-20: vector.shuffle | ||
// CHECK: vector.shape_cast {{.*}} : vector<24xf32> to vector<4x3x2xf32> | ||
// CHECK-NOT: vector.broadcast | ||
func.func @broadcast_stretch_in_middle(%arg0: vector<4x1x2xf32>) -> vector<4x3x2xf32> { | ||
%0 = vector.broadcast %arg0 : vector<4x1x2xf32> to vector<4x3x2xf32> | ||
return %0 : vector<4x3x2xf32> | ||
} | ||
|
||
// CHECK-LABEL: func.func @gather_memref_2d | ||
// CHECK-SAME: (%arg0: memref<?x?xf32>, %arg1: vector<2x3xindex>, %arg2: vector<2x3xi1>, %arg3: vector<2x3xf32>) -> vector<2x3xf32> { | ||
|
||
// CHECK: %0 = ub.poison : vector<6xf32> | ||
// CHECK: %c1 = arith.constant 1 : index | ||
// CHECK: %c0 = arith.constant 0 : index | ||
// CHECK: %1 = vector.shape_cast %arg3 : vector<2x3xf32> to vector<6xf32> | ||
|
||
// First shuffle + if ladder for row 0 | ||
// CHECK: %2 = vector.shuffle %1, %1 [0, 1, 2] | ||
// CHECK: %3 = vector.extract %arg2[0, 0] | ||
// CHECK: %4 = vector.extract %arg1[0, 0] | ||
// CHECK: %5 = arith.addi %4, %c1 | ||
// CHECK: %6 = scf.if %3 -> (vector<3xf32>) { | ||
// CHECK: %{{.*}} = vector.load %arg0[%c0, %5] : memref<?x?xf32>, vector<1xf32> | ||
// CHECK: %{{.*}} = vector.extract {{.*}}[0] : f32 | ||
// CHECK: %{{.*}} = vector.insert {{.*}}, %2 [0] : f32 into vector<3xf32> | ||
// CHECK: scf.yield {{.*}} : vector<3xf32> | ||
// CHECK: } else { | ||
// CHECK: scf.yield %2 : vector<3xf32> | ||
// CHECK: } | ||
|
||
// CHECK: %7 = vector.extract %arg2[0, 1] | ||
// CHECK: %8 = vector.extract %arg1[0, 1] | ||
// CHECK: %9 = arith.addi %8, %c1 | ||
// CHECK: %10 = scf.if %7 -> (vector<3xf32>) | ||
|
||
// … (similar checks for the rest of row 0, then row 1) | ||
|
||
// CHECK: %15 = vector.shuffle %0, %{{.*}} [6, 7, 8, 3, 4, 5] | ||
// CHECK: %16 = vector.shuffle %1, %1 [3, 4, 5] | ||
|
||
// Row 1 if ladder checks | ||
// CHECK: %17 = vector.extract %arg2[1, 0] | ||
// CHECK: %18 = vector.extract %arg1[1, 0] | ||
// CHECK: %19 = arith.addi %18, %c1 | ||
// CHECK: %20 = scf.if %17 -> (vector<3xf32>) | ||
|
||
// … (similar checks for remaining row 1 inserts) | ||
|
||
// Final reshuffle and cast | ||
// CHECK: %29 = vector.shuffle %15, %{{.*}} [0, 1, 2, 6, 7, 8] | ||
// CHECK: %30 = vector.shape_cast %29 : vector<6xf32> to vector<2x3xf32> | ||
// CHECK: return %30 : vector<2x3xf32> | ||
func.func @gather_memref_2d(%base: memref<?x?xf32>, %v: vector<2x3xindex>, %mask: vector<2x3xi1>, %pass_thru: vector<2x3xf32>) -> vector<2x3xf32> { | ||
%c0 = arith.constant 0 : index | ||
%c1 = arith.constant 1 : index | ||
%0 = vector.gather %base[%c0, %c1][%v], %mask, %pass_thru : memref<?x?xf32>, vector<2x3xindex>, vector<2x3xi1>, vector<2x3xf32> into vector<2x3xf32> | ||
return %0 : vector<2x3xf32> | ||
} | ||
|
||
// ----- | ||
// Check for vector linearization interoperability with XeGPU dialect ops. | ||
// The `xegpu-vector-linearize` pass does not itself affect the XeGPU ops. | ||
|
||
// CHECK: gpu.func @test_kernel(%arg0: memref<8x16xf16>, %arg1: memref<16x16xf16>, %arg2: memref<8x16xf32>) kernel { | ||
// CHECK: %c0 = arith.constant 0 : index | ||
// CHECK: %cst = arith.constant dense<0.000000e+00> : vector<64xf16> | ||
// CHECK: %cst_0 = arith.constant dense<5.000000e+00> : vector<64xf32> | ||
|
||
// CHECK: %0 = xegpu.create_nd_tdesc %arg0[%c0, %c0] | ||
// CHECK: %1 = xegpu.load_nd %0 | ||
// CHECK: %2 = vector.shape_cast %1 : vector<8x16xf16> to vector<128xf16> | ||
// CHECK: %3 = vector.shuffle %2, %cst {{.*}} : vector<128xf16>, vector<64xf16> | ||
// CHECK: %4 = vector.shape_cast %3 : vector<128xf16> to vector<8x16xf16> | ||
|
||
// CHECK: %5 = xegpu.create_nd_tdesc %arg1[%c0, %c0] | ||
// CHECK: %6 = xegpu.load_nd %5 | ||
// CHECK: %7 = vector.shape_cast %6 : vector<16x16xf16> to vector<256xf16> | ||
// CHECK: %8 = vector.shuffle %7, %cst {{.*}} : vector<256xf16>, vector<64xf16> | ||
// CHECK: %9 = vector.shape_cast %8 : vector<256xf16> to vector<16x16xf16> | ||
|
||
// CHECK: %10 = xegpu.dpas %4, %9 : vector<8x16xf16>, vector<16x16xf16> -> vector<8x16xf32> | ||
// CHECK: %11 = vector.shape_cast %10 : vector<8x16xf32> to vector<128xf32> | ||
// CHECK: %12 = vector.shuffle %11, %11 {{.*}} : vector<128xf32>, vector<128xf32> | ||
// CHECK: %13 = arith.addf %12, %cst_0 : vector<64xf32> | ||
// CHECK: %14 = vector.shuffle %11, %13 {{.*}} : vector<128xf32>, vector<64xf32> | ||
// CHECK: %15 = vector.shape_cast %14 : vector<128xf32> to vector<8x16xf32> | ||
|
||
// CHECK: %16 = xegpu.create_nd_tdesc %arg2[%c0, %c0] | ||
// CHECK: xegpu.store_nd %15, %16 | ||
// CHECK: gpu.return | ||
|
||
gpu.module @test_kernel { | ||
gpu.func @test_kernel(%A: memref<8x16xf16>, %B: memref<16x16xf16>, %C: memref<8x16xf32>) kernel { | ||
%c0 = arith.constant 0 : index | ||
%cst_vec_0 = arith.constant dense<0.000000e+00> : vector<8x8xf16> | ||
%cst_vec_1 = arith.constant dense<0.000000e+00> : vector<8x8xf16> | ||
%cst_vec_2 = arith.constant dense<5.000000e+00> : vector<8x8xf32> | ||
%a_tdesc = xegpu.create_nd_tdesc %A[%c0, %c0] : memref<8x16xf16> -> !xegpu.tensor_desc<8x16xf16, #xegpu.block_tdesc_attr<array_length = 1>> | ||
%a_val = xegpu.load_nd %a_tdesc : !xegpu.tensor_desc<8x16xf16, #xegpu.block_tdesc_attr<array_length = 1>> -> vector<8x16xf16> | ||
%a_val_0 = vector.insert_strided_slice %cst_vec_0, %a_val{offsets = [0, 0], sizes = [8, 8], strides = [1, 1]}: vector<8x8xf16> into vector<8x16xf16> | ||
%b_tdesc = xegpu.create_nd_tdesc %B[%c0, %c0] : memref<16x16xf16> -> !xegpu.tensor_desc<16x16xf16, #xegpu.block_tdesc_attr<array_length = 1>> | ||
|
||
%b_val = xegpu.load_nd %b_tdesc : !xegpu.tensor_desc<16x16xf16, #xegpu.block_tdesc_attr<array_length = 1>> -> vector<16x16xf16> | ||
%b_val_0 = vector.insert_strided_slice %cst_vec_1, %b_val{offsets = [0, 0], sizes = [8, 8], strides = [1, 1]}: vector<8x8xf16> into vector<16x16xf16> | ||
%c_val = xegpu.dpas %a_val_0, %b_val_0 : vector<8x16xf16>, vector<16x16xf16> -> vector<8x16xf32> | ||
%c_val_0 = vector.extract_strided_slice %c_val {offsets = [0, 0], sizes = [8, 8], strides = [1, 1]} : vector<8x16xf32> to vector<8x8xf32> | ||
%c_addf = arith.addf %c_val_0, %cst_vec_2 : vector<8x8xf32> | ||
%c_result = vector.insert_strided_slice %c_addf, %c_val {offsets = [0, 0], sizes = [8, 8], strides = [1, 1]} : vector<8x8xf32> into vector<8x16xf32> | ||
%c_tdesc = xegpu.create_nd_tdesc %C[%c0, %c0] : memref<8x16xf32> -> !xegpu.tensor_desc<8x16xf32, #xegpu.block_tdesc_attr<array_length = 1>> | ||
xegpu.store_nd %c_result, %c_tdesc : vector<8x16xf32>, !xegpu.tensor_desc<8x16xf32> | ||
gpu.return | ||
} | ||
} | ||
|
||
|
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Uh oh!
There was an error while loading. Please reload this page.