Skip to content

Conversation

ArtemySkrebkov
Copy link
Contributor

In a downstream project, there is a need for a type conversion pattern for scf.index_switch operation. A test is added into mlir/test/Dialect/SparseTensor/scf_1_N_conversion.mlir (not sure this functionality is really required for sparse tensors, but the test showcase that the new conversion pattern is functional)

Copy link

Thank you for submitting a Pull Request (PR) to the LLVM Project!

This PR will be automatically labeled and the relevant teams will be notified.

If you wish to, you can add reviewers by using the "Reviewers" section on this page.

If this is not working for you, it is probably because you do not have write permissions for the repository. In which case you can instead tag reviewers by name in a comment by using @ followed by their GitHub username.

If you have received no comments on your PR for a week, you can request a review by "ping"ing the PR by adding a comment “Ping”. The common courtesy "ping" rate is once a week. Please remember that you are asking for valuable time from other developers.

If you have further questions, they may be answered by the LLVM GitHub User Guide.

You can also ask questions in a comment on this PR, on the LLVM Discord or on the forums.

@llvmbot llvmbot added mlir:sparse Sparse compiler in MLIR mlir mlir:scf labels Sep 23, 2025
@llvmbot
Copy link
Member

llvmbot commented Sep 23, 2025

@llvm/pr-subscribers-mlir

Author: Artemy Skrebkov (ArtemySkrebkov)

Changes

In a downstream project, there is a need for a type conversion pattern for scf.index_switch operation. A test is added into mlir/test/Dialect/SparseTensor/scf_1_N_conversion.mlir (not sure this functionality is really required for sparse tensors, but the test showcase that the new conversion pattern is functional)


Full diff: https://github.com/llvm/llvm-project/pull/160344.diff

2 Files Affected:

  • (modified) mlir/lib/Dialect/SCF/Transforms/StructuralTypeConversions.cpp (+30-4)
  • (modified) mlir/test/Dialect/SparseTensor/scf_1_N_conversion.mlir (+43)
diff --git a/mlir/lib/Dialect/SCF/Transforms/StructuralTypeConversions.cpp b/mlir/lib/Dialect/SCF/Transforms/StructuralTypeConversions.cpp
index b0c781c7aff11..c9ff7885f3a49 100644
--- a/mlir/lib/Dialect/SCF/Transforms/StructuralTypeConversions.cpp
+++ b/mlir/lib/Dialect/SCF/Transforms/StructuralTypeConversions.cpp
@@ -185,6 +185,31 @@ class ConvertWhileOpTypes
 };
 } // namespace
 
+namespace {
+class ConvertIndexSwitchOpTypes
+    : public Structural1ToNConversionPattern<IndexSwitchOp,
+                                             ConvertIndexSwitchOpTypes> {
+public:
+  using Structural1ToNConversionPattern::Structural1ToNConversionPattern;
+
+  std::optional<IndexSwitchOp>
+  convertSourceOp(IndexSwitchOp op, OneToNOpAdaptor adaptor,
+                  ConversionPatternRewriter &rewriter,
+                  TypeRange dstTypes) const {
+    auto newOp = rewriter.create<IndexSwitchOp>(
+        op.getLoc(), dstTypes, op.getArg(), op.getCases(), op.getNumCases());
+
+    for (unsigned i = 0u; i < op.getNumRegions(); i++) {
+      if (failed(rewriter.convertRegionTypes(&op.getRegion(i), *typeConverter)))
+        return std::nullopt;
+      auto &dstRegion = newOp.getRegion(i);
+      rewriter.inlineRegionBefore(op.getRegion(i), dstRegion, dstRegion.end());
+    }
+    return newOp;
+  }
+};
+} // namespace
+
 namespace {
 // When the result types of a ForOp/IfOp get changed, the operand types of the
 // corresponding yield op need to be changed. In order to trigger the
@@ -220,18 +245,19 @@ void mlir::scf::populateSCFStructuralTypeConversions(
     const TypeConverter &typeConverter, RewritePatternSet &patterns,
     PatternBenefit benefit) {
   patterns.add<ConvertForOpTypes, ConvertIfOpTypes, ConvertYieldOpTypes,
-               ConvertWhileOpTypes, ConvertConditionOpTypes>(
-      typeConverter, patterns.getContext(), benefit);
+               ConvertWhileOpTypes, ConvertConditionOpTypes,
+               ConvertIndexSwitchOpTypes>(typeConverter, patterns.getContext(),
+                                          benefit);
 }
 
 void mlir::scf::populateSCFStructuralTypeConversionTarget(
     const TypeConverter &typeConverter, ConversionTarget &target) {
-  target.addDynamicallyLegalOp<ForOp, IfOp>(
+  target.addDynamicallyLegalOp<ForOp, IfOp, IndexSwitchOp>(
       [&](Operation *op) { return typeConverter.isLegal(op->getResults()); });
   target.addDynamicallyLegalOp<scf::YieldOp>([&](scf::YieldOp op) {
     // We only have conversions for a subset of ops that use scf.yield
     // terminators.
-    if (!isa<ForOp, IfOp, WhileOp>(op->getParentOp()))
+    if (!isa<ForOp, IfOp, WhileOp, IndexSwitchOp>(op->getParentOp()))
       return true;
     return typeConverter.isLegal(op.getOperands());
   });
diff --git a/mlir/test/Dialect/SparseTensor/scf_1_N_conversion.mlir b/mlir/test/Dialect/SparseTensor/scf_1_N_conversion.mlir
index f5d6a08b7de31..00f13ed7c8149 100644
--- a/mlir/test/Dialect/SparseTensor/scf_1_N_conversion.mlir
+++ b/mlir/test/Dialect/SparseTensor/scf_1_N_conversion.mlir
@@ -86,3 +86,46 @@ func.func @while(%arg0: tensor<1024xf32, #SparseVector>, %c: i1) -> tensor<1024x
   }
   return %0: tensor<1024xf32, #SparseVector>
 }
+
+// CHECK-LABEL:   func.func @index_switch(
+// CHECK-SAME:                            %[[PRED:.*0]]: index,
+// CHECK-SAME:                            %[[VAL_A_1:.*1]]: memref<?xindex>,
+// CHECK-SAME:                            %[[VAL_A_2:.*2]]: memref<?xindex>,
+// CHECK-SAME:                            %[[VAL_A_3:.*3]]: memref<?xf32>,
+// CHECK-SAME:                            %[[VAL_A_4:.*4]]: !sparse_tensor.storage_specifier
+// CHECK-SAME:                            %[[VAL_B_1:.*5]]: memref<?xindex>,
+// CHECK-SAME:                            %[[VAL_B_2:.*6]]: memref<?xindex>,
+// CHECK-SAME:                            %[[VAL_B_3:.*7]]: memref<?xf32>,
+// CHECK-SAME:                            %[[VAL_B_4:.*8]]: !sparse_tensor.storage_specifier
+// CHECK-SAME:                            %[[VAL_C_1:.*9]]: memref<?xindex>,
+// CHECK-SAME:                            %[[VAL_C_2:.*10]]: memref<?xindex>,
+// CHECK-SAME:                            %[[VAL_C_3:.*11]]: memref<?xf32>,
+// CHECK-SAME:                            %[[VAL_C_4:.*12]]: !sparse_tensor.storage_specifier
+
+// CHECK:           %[[RES:.*]]:4 = scf.index_switch %[[PRED]]
+// CHECK:           case 1 {
+// CHECK:             scf.yield %[[VAL_A_1]], %[[VAL_A_2]], %[[VAL_A_3]], %[[VAL_A_4]]
+// CHECK:           case 2 {
+// CHECK:             scf.yield %[[VAL_B_1]], %[[VAL_B_2]], %[[VAL_B_3]], %[[VAL_B_4]]
+// CHECK:           default {
+// CHECK:             scf.yield %[[VAL_C_1]], %[[VAL_C_2]], %[[VAL_C_3]], %[[VAL_C_4]]
+
+// CHECK:           return %[[RES]]#0, %[[RES]]#1, %[[RES]]#2, %[[RES]]#3 :
+// CHECK-SAME:        memref<?xindex>, memref<?xindex>, memref<?xf32>, !sparse_tensor.storage_specifier
+
+func.func @index_switch(%pred: index, %a: tensor<5xf32, #SparseVector>,
+                        %b: tensor<5xf32, #SparseVector>,
+                        %c: tensor<5xf32, #SparseVector>) -> tensor<5xf32, #SparseVector> {
+  %0 = scf.index_switch %pred -> tensor<5xf32, #SparseVector>
+  case 1 {
+    scf.yield %a : tensor<5xf32, #SparseVector>
+  }
+  case 2 {
+    scf.yield %b : tensor<5xf32, #SparseVector>
+  }
+  default {
+    scf.yield %c : tensor<5xf32, #SparseVector>
+  }
+
+  return %0 : tensor<5xf32, #SparseVector>
+}

@llvmbot
Copy link
Member

llvmbot commented Sep 23, 2025

@llvm/pr-subscribers-mlir-scf

Author: Artemy Skrebkov (ArtemySkrebkov)

Changes

In a downstream project, there is a need for a type conversion pattern for scf.index_switch operation. A test is added into mlir/test/Dialect/SparseTensor/scf_1_N_conversion.mlir (not sure this functionality is really required for sparse tensors, but the test showcase that the new conversion pattern is functional)


Full diff: https://github.com/llvm/llvm-project/pull/160344.diff

2 Files Affected:

  • (modified) mlir/lib/Dialect/SCF/Transforms/StructuralTypeConversions.cpp (+30-4)
  • (modified) mlir/test/Dialect/SparseTensor/scf_1_N_conversion.mlir (+43)
diff --git a/mlir/lib/Dialect/SCF/Transforms/StructuralTypeConversions.cpp b/mlir/lib/Dialect/SCF/Transforms/StructuralTypeConversions.cpp
index b0c781c7aff11..c9ff7885f3a49 100644
--- a/mlir/lib/Dialect/SCF/Transforms/StructuralTypeConversions.cpp
+++ b/mlir/lib/Dialect/SCF/Transforms/StructuralTypeConversions.cpp
@@ -185,6 +185,31 @@ class ConvertWhileOpTypes
 };
 } // namespace
 
+namespace {
+class ConvertIndexSwitchOpTypes
+    : public Structural1ToNConversionPattern<IndexSwitchOp,
+                                             ConvertIndexSwitchOpTypes> {
+public:
+  using Structural1ToNConversionPattern::Structural1ToNConversionPattern;
+
+  std::optional<IndexSwitchOp>
+  convertSourceOp(IndexSwitchOp op, OneToNOpAdaptor adaptor,
+                  ConversionPatternRewriter &rewriter,
+                  TypeRange dstTypes) const {
+    auto newOp = rewriter.create<IndexSwitchOp>(
+        op.getLoc(), dstTypes, op.getArg(), op.getCases(), op.getNumCases());
+
+    for (unsigned i = 0u; i < op.getNumRegions(); i++) {
+      if (failed(rewriter.convertRegionTypes(&op.getRegion(i), *typeConverter)))
+        return std::nullopt;
+      auto &dstRegion = newOp.getRegion(i);
+      rewriter.inlineRegionBefore(op.getRegion(i), dstRegion, dstRegion.end());
+    }
+    return newOp;
+  }
+};
+} // namespace
+
 namespace {
 // When the result types of a ForOp/IfOp get changed, the operand types of the
 // corresponding yield op need to be changed. In order to trigger the
@@ -220,18 +245,19 @@ void mlir::scf::populateSCFStructuralTypeConversions(
     const TypeConverter &typeConverter, RewritePatternSet &patterns,
     PatternBenefit benefit) {
   patterns.add<ConvertForOpTypes, ConvertIfOpTypes, ConvertYieldOpTypes,
-               ConvertWhileOpTypes, ConvertConditionOpTypes>(
-      typeConverter, patterns.getContext(), benefit);
+               ConvertWhileOpTypes, ConvertConditionOpTypes,
+               ConvertIndexSwitchOpTypes>(typeConverter, patterns.getContext(),
+                                          benefit);
 }
 
 void mlir::scf::populateSCFStructuralTypeConversionTarget(
     const TypeConverter &typeConverter, ConversionTarget &target) {
-  target.addDynamicallyLegalOp<ForOp, IfOp>(
+  target.addDynamicallyLegalOp<ForOp, IfOp, IndexSwitchOp>(
       [&](Operation *op) { return typeConverter.isLegal(op->getResults()); });
   target.addDynamicallyLegalOp<scf::YieldOp>([&](scf::YieldOp op) {
     // We only have conversions for a subset of ops that use scf.yield
     // terminators.
-    if (!isa<ForOp, IfOp, WhileOp>(op->getParentOp()))
+    if (!isa<ForOp, IfOp, WhileOp, IndexSwitchOp>(op->getParentOp()))
       return true;
     return typeConverter.isLegal(op.getOperands());
   });
diff --git a/mlir/test/Dialect/SparseTensor/scf_1_N_conversion.mlir b/mlir/test/Dialect/SparseTensor/scf_1_N_conversion.mlir
index f5d6a08b7de31..00f13ed7c8149 100644
--- a/mlir/test/Dialect/SparseTensor/scf_1_N_conversion.mlir
+++ b/mlir/test/Dialect/SparseTensor/scf_1_N_conversion.mlir
@@ -86,3 +86,46 @@ func.func @while(%arg0: tensor<1024xf32, #SparseVector>, %c: i1) -> tensor<1024x
   }
   return %0: tensor<1024xf32, #SparseVector>
 }
+
+// CHECK-LABEL:   func.func @index_switch(
+// CHECK-SAME:                            %[[PRED:.*0]]: index,
+// CHECK-SAME:                            %[[VAL_A_1:.*1]]: memref<?xindex>,
+// CHECK-SAME:                            %[[VAL_A_2:.*2]]: memref<?xindex>,
+// CHECK-SAME:                            %[[VAL_A_3:.*3]]: memref<?xf32>,
+// CHECK-SAME:                            %[[VAL_A_4:.*4]]: !sparse_tensor.storage_specifier
+// CHECK-SAME:                            %[[VAL_B_1:.*5]]: memref<?xindex>,
+// CHECK-SAME:                            %[[VAL_B_2:.*6]]: memref<?xindex>,
+// CHECK-SAME:                            %[[VAL_B_3:.*7]]: memref<?xf32>,
+// CHECK-SAME:                            %[[VAL_B_4:.*8]]: !sparse_tensor.storage_specifier
+// CHECK-SAME:                            %[[VAL_C_1:.*9]]: memref<?xindex>,
+// CHECK-SAME:                            %[[VAL_C_2:.*10]]: memref<?xindex>,
+// CHECK-SAME:                            %[[VAL_C_3:.*11]]: memref<?xf32>,
+// CHECK-SAME:                            %[[VAL_C_4:.*12]]: !sparse_tensor.storage_specifier
+
+// CHECK:           %[[RES:.*]]:4 = scf.index_switch %[[PRED]]
+// CHECK:           case 1 {
+// CHECK:             scf.yield %[[VAL_A_1]], %[[VAL_A_2]], %[[VAL_A_3]], %[[VAL_A_4]]
+// CHECK:           case 2 {
+// CHECK:             scf.yield %[[VAL_B_1]], %[[VAL_B_2]], %[[VAL_B_3]], %[[VAL_B_4]]
+// CHECK:           default {
+// CHECK:             scf.yield %[[VAL_C_1]], %[[VAL_C_2]], %[[VAL_C_3]], %[[VAL_C_4]]
+
+// CHECK:           return %[[RES]]#0, %[[RES]]#1, %[[RES]]#2, %[[RES]]#3 :
+// CHECK-SAME:        memref<?xindex>, memref<?xindex>, memref<?xf32>, !sparse_tensor.storage_specifier
+
+func.func @index_switch(%pred: index, %a: tensor<5xf32, #SparseVector>,
+                        %b: tensor<5xf32, #SparseVector>,
+                        %c: tensor<5xf32, #SparseVector>) -> tensor<5xf32, #SparseVector> {
+  %0 = scf.index_switch %pred -> tensor<5xf32, #SparseVector>
+  case 1 {
+    scf.yield %a : tensor<5xf32, #SparseVector>
+  }
+  case 2 {
+    scf.yield %b : tensor<5xf32, #SparseVector>
+  }
+  default {
+    scf.yield %c : tensor<5xf32, #SparseVector>
+  }
+
+  return %0 : tensor<5xf32, #SparseVector>
+}

@llvmbot
Copy link
Member

llvmbot commented Sep 23, 2025

@llvm/pr-subscribers-mlir-sparse

Author: Artemy Skrebkov (ArtemySkrebkov)

Changes

In a downstream project, there is a need for a type conversion pattern for scf.index_switch operation. A test is added into mlir/test/Dialect/SparseTensor/scf_1_N_conversion.mlir (not sure this functionality is really required for sparse tensors, but the test showcase that the new conversion pattern is functional)


Full diff: https://github.com/llvm/llvm-project/pull/160344.diff

2 Files Affected:

  • (modified) mlir/lib/Dialect/SCF/Transforms/StructuralTypeConversions.cpp (+30-4)
  • (modified) mlir/test/Dialect/SparseTensor/scf_1_N_conversion.mlir (+43)
diff --git a/mlir/lib/Dialect/SCF/Transforms/StructuralTypeConversions.cpp b/mlir/lib/Dialect/SCF/Transforms/StructuralTypeConversions.cpp
index b0c781c7aff11..c9ff7885f3a49 100644
--- a/mlir/lib/Dialect/SCF/Transforms/StructuralTypeConversions.cpp
+++ b/mlir/lib/Dialect/SCF/Transforms/StructuralTypeConversions.cpp
@@ -185,6 +185,31 @@ class ConvertWhileOpTypes
 };
 } // namespace
 
+namespace {
+class ConvertIndexSwitchOpTypes
+    : public Structural1ToNConversionPattern<IndexSwitchOp,
+                                             ConvertIndexSwitchOpTypes> {
+public:
+  using Structural1ToNConversionPattern::Structural1ToNConversionPattern;
+
+  std::optional<IndexSwitchOp>
+  convertSourceOp(IndexSwitchOp op, OneToNOpAdaptor adaptor,
+                  ConversionPatternRewriter &rewriter,
+                  TypeRange dstTypes) const {
+    auto newOp = rewriter.create<IndexSwitchOp>(
+        op.getLoc(), dstTypes, op.getArg(), op.getCases(), op.getNumCases());
+
+    for (unsigned i = 0u; i < op.getNumRegions(); i++) {
+      if (failed(rewriter.convertRegionTypes(&op.getRegion(i), *typeConverter)))
+        return std::nullopt;
+      auto &dstRegion = newOp.getRegion(i);
+      rewriter.inlineRegionBefore(op.getRegion(i), dstRegion, dstRegion.end());
+    }
+    return newOp;
+  }
+};
+} // namespace
+
 namespace {
 // When the result types of a ForOp/IfOp get changed, the operand types of the
 // corresponding yield op need to be changed. In order to trigger the
@@ -220,18 +245,19 @@ void mlir::scf::populateSCFStructuralTypeConversions(
     const TypeConverter &typeConverter, RewritePatternSet &patterns,
     PatternBenefit benefit) {
   patterns.add<ConvertForOpTypes, ConvertIfOpTypes, ConvertYieldOpTypes,
-               ConvertWhileOpTypes, ConvertConditionOpTypes>(
-      typeConverter, patterns.getContext(), benefit);
+               ConvertWhileOpTypes, ConvertConditionOpTypes,
+               ConvertIndexSwitchOpTypes>(typeConverter, patterns.getContext(),
+                                          benefit);
 }
 
 void mlir::scf::populateSCFStructuralTypeConversionTarget(
     const TypeConverter &typeConverter, ConversionTarget &target) {
-  target.addDynamicallyLegalOp<ForOp, IfOp>(
+  target.addDynamicallyLegalOp<ForOp, IfOp, IndexSwitchOp>(
       [&](Operation *op) { return typeConverter.isLegal(op->getResults()); });
   target.addDynamicallyLegalOp<scf::YieldOp>([&](scf::YieldOp op) {
     // We only have conversions for a subset of ops that use scf.yield
     // terminators.
-    if (!isa<ForOp, IfOp, WhileOp>(op->getParentOp()))
+    if (!isa<ForOp, IfOp, WhileOp, IndexSwitchOp>(op->getParentOp()))
       return true;
     return typeConverter.isLegal(op.getOperands());
   });
diff --git a/mlir/test/Dialect/SparseTensor/scf_1_N_conversion.mlir b/mlir/test/Dialect/SparseTensor/scf_1_N_conversion.mlir
index f5d6a08b7de31..00f13ed7c8149 100644
--- a/mlir/test/Dialect/SparseTensor/scf_1_N_conversion.mlir
+++ b/mlir/test/Dialect/SparseTensor/scf_1_N_conversion.mlir
@@ -86,3 +86,46 @@ func.func @while(%arg0: tensor<1024xf32, #SparseVector>, %c: i1) -> tensor<1024x
   }
   return %0: tensor<1024xf32, #SparseVector>
 }
+
+// CHECK-LABEL:   func.func @index_switch(
+// CHECK-SAME:                            %[[PRED:.*0]]: index,
+// CHECK-SAME:                            %[[VAL_A_1:.*1]]: memref<?xindex>,
+// CHECK-SAME:                            %[[VAL_A_2:.*2]]: memref<?xindex>,
+// CHECK-SAME:                            %[[VAL_A_3:.*3]]: memref<?xf32>,
+// CHECK-SAME:                            %[[VAL_A_4:.*4]]: !sparse_tensor.storage_specifier
+// CHECK-SAME:                            %[[VAL_B_1:.*5]]: memref<?xindex>,
+// CHECK-SAME:                            %[[VAL_B_2:.*6]]: memref<?xindex>,
+// CHECK-SAME:                            %[[VAL_B_3:.*7]]: memref<?xf32>,
+// CHECK-SAME:                            %[[VAL_B_4:.*8]]: !sparse_tensor.storage_specifier
+// CHECK-SAME:                            %[[VAL_C_1:.*9]]: memref<?xindex>,
+// CHECK-SAME:                            %[[VAL_C_2:.*10]]: memref<?xindex>,
+// CHECK-SAME:                            %[[VAL_C_3:.*11]]: memref<?xf32>,
+// CHECK-SAME:                            %[[VAL_C_4:.*12]]: !sparse_tensor.storage_specifier
+
+// CHECK:           %[[RES:.*]]:4 = scf.index_switch %[[PRED]]
+// CHECK:           case 1 {
+// CHECK:             scf.yield %[[VAL_A_1]], %[[VAL_A_2]], %[[VAL_A_3]], %[[VAL_A_4]]
+// CHECK:           case 2 {
+// CHECK:             scf.yield %[[VAL_B_1]], %[[VAL_B_2]], %[[VAL_B_3]], %[[VAL_B_4]]
+// CHECK:           default {
+// CHECK:             scf.yield %[[VAL_C_1]], %[[VAL_C_2]], %[[VAL_C_3]], %[[VAL_C_4]]
+
+// CHECK:           return %[[RES]]#0, %[[RES]]#1, %[[RES]]#2, %[[RES]]#3 :
+// CHECK-SAME:        memref<?xindex>, memref<?xindex>, memref<?xf32>, !sparse_tensor.storage_specifier
+
+func.func @index_switch(%pred: index, %a: tensor<5xf32, #SparseVector>,
+                        %b: tensor<5xf32, #SparseVector>,
+                        %c: tensor<5xf32, #SparseVector>) -> tensor<5xf32, #SparseVector> {
+  %0 = scf.index_switch %pred -> tensor<5xf32, #SparseVector>
+  case 1 {
+    scf.yield %a : tensor<5xf32, #SparseVector>
+  }
+  case 2 {
+    scf.yield %b : tensor<5xf32, #SparseVector>
+  }
+  default {
+    scf.yield %c : tensor<5xf32, #SparseVector>
+  }
+
+  return %0 : tensor<5xf32, #SparseVector>
+}

@ArtemySkrebkov
Copy link
Contributor Author

@Hardcode84 @matthias-springer

I've seen your contributions to SCF dialect and infrastructure related to type conversion. This PR seems to fall to those categories, so can you please help reviewing the PR?

Copy link
Contributor

@Hardcode84 Hardcode84 left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

The fact scf structural type conversion only tested in SparseTensor tests and don't have a dedicated test (at least I wasn't able to find one) is not ideal, but I think that's out of scope for this PR.

LGTM.

@ArtemySkrebkov
Copy link
Contributor Author

Yeah. as far as I see it used to be tested also by https://github.com/llvm/llvm-project/blob/main/mlir/test/Dialect/SCF/bufferize.mlir before #113840 was merged, since then it is tested only by SparseTensor tests.

@matthias-springer can you please have a look and help merging the PR if you are okay with the changes? Thanks.

@matthias-springer matthias-springer merged commit 72b8073 into llvm:main Sep 24, 2025
9 checks passed
Copy link

@ArtemySkrebkov Congratulations on having your first Pull Request (PR) merged into the LLVM Project!

Your changes will be combined with recent changes from other authors, then tested by our build bots. If there is a problem with a build, you may receive a report in an email or a comment on this PR.

Please check whether problems have been caused by your change specifically, as the builds can include changes from many authors. It is not uncommon for your change to be included in a build that fails due to someone else's changes, or infrastructure issues.

How to do this, and the rest of the post-merge process, is covered in detail here.

If your change does cause a problem, it may be reverted, or you can revert it yourself. This is a normal part of LLVM development. You can fix your changes and open a new PR to merge them again.

If you don't get any reports, no action is required from you. Your changes are working as expected, well done!

mahesh-attarde pushed a commit to mahesh-attarde/llvm-project that referenced this pull request Oct 3, 2025
…eConversionsAndLegality (llvm#160344)

In a downstream project, there is a need for a type conversion pattern
for scf.index_switch operation. A test is added into
`mlir/test/Dialect/SparseTensor/scf_1_N_conversion.mlir` (not sure this
functionality is really required for sparse tensors, but the test
showcase that the new conversion pattern is functional)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

mlir:scf mlir:sparse Sparse compiler in MLIR mlir

Projects

None yet

Development

Successfully merging this pull request may close these issues.

4 participants